Docker安装Canal、MySQL 进行简单测试与实现Redis和MySQL 缓存一致性

网友投稿 657 2023-04-16

Docker安装Canal、MySQL 进行简单测试与实现Redis和MySQL 缓存一致性

Docker安装Canal、MySQL 进行简单测试与实现Redis和MySQL 缓存一致性

一、简介

canal [kə'næl],译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费。早期阿里巴巴因为杭州和美国双机房部署,存在跨机房同步的业务需求,实现方式主要是基于业务 trigger 获取增量变更。从 2010 年开始,业务逐步尝试数据库日志解析获取增量变更进行同步,由此衍生出了大量的数据库增量订阅和消费业务。

Canal 是用 Java 开发的基于数据库增量日志解析,提供增量数据订阅&消费的中间件。目前,Canal 主要支持了 MySQL 的 Binlog 解析,解析完成后才利用 Canal Client 来处理获得的相关数据。(数据库同步需要阿里的 Otter 中间件,基于 Canal)。

当前的 canal 支持源端 MySQL 版本包括 5.1.x , 5.5.x , 5.6.x , 5.7.x , 8.0.x。

canal github地址:

二、MySQL 的 Binlog

1、Binlog介绍

MySQL 的二进制日志可以说 MySQL 最重要的日志了,它记录了所有的 DDL 和 DML(除了数据查询语句)语句,以事件形式记录,还包含语句所执行的消耗的时间,MySQL 的二进 制日志是事务安全型的。一般来说开启二进制日志大概会有 1%的性能损耗。二进制有两个最重要的使用场景:

MySQL Replication 在 Master 端开启 Binlog,Master 把它的二进制日志传递给 Slaves来达到 Master-Slave 数据一致的目的,这就是我们常用的主从复制。就是数据恢复了,通过使用 MySQL Binlog 工具来使恢复数据,生产上要开启,不然真的要删库跑路了 。

2. Binlog 的分类

MySQL Binlog 的格式有三种,分别是 STATEMENT,MIXED,ROW。在配置文件中可以选择配置 binlog_format= statement|mixed|row。

statement:语句级,binlog 会记录每次一执行写操作的语句。比如update user set create_date=now()优点:节省空间。缺点:有可能造成数据不一致。row:行级, binlog 会记录每次操作后每行记录的变化。优点:保持数据的绝对一致性缺点:占用较大空间mixed:statement 的升级版,一定程度上解决了,因为一些情况而造成的 statement模式不一致问题,默认还是 statement,一些会产生不一致的情况还是会选择row。

综合对比

Canal 想做监控分析,选择 row 格式比较合适。

三、工作原理

1、MySQL主备复制原理

MySQL master 将数据变更写入二进制日志( binary log, 其中记录叫做二进制日志事件binary log events,可以通过 show binlog events 进行查看)MySQL slave 将 master 的 binary log events 拷贝到它的中继日志(relay log)MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据

2、canal 工作原理

canal 模拟 MySQL slave 的交互协议,伪装自己为 MySQL slave ,向 MySQL master 发送dump 协议MySQL master 收到 dump 请求,开始推送 binary log 给 slave (即 canal )canal 解析 binary log 对象(原始为 byte 流)

==总结:==

我们可以把canal理解为从机,拿到数据然后进行后续操作,可以同步到redis上,再也不需要进行延迟双删来保证mysql和redis的数据一致性了,而且还不会出现各种各样的问题!

四、canal使用场景

场景一:阿里 Otter 中间件的一部分,Otter 是阿里用于进行异地数据库之间的同步框架,Canal 是其中一部分。

otter github地址:

场景二:保证缓存和数据库一致性(我们今天要测试的)。

场景三:实时数据分析。

抓取业务表的新增变化数据,用于制作实时统计

五、安装mysql、redis

1、安装mysql

sudo docker run -p 3306:3306 --name mysql \-v /mydata/mysql/log:/var/log/mysql \-v /mydata/mysql/data:/var/lib/mysql \-v /mydata/mysql/conf:/etc/mysql \-e MYSQL_ROOT_PASSWORD=root \-d mysql:5.7

2、Docker配置MySQL

vim /mydata/mysql/conf/my.cnf # 创建并进入编辑

添加如下配置:

[client]default-character-set=utf8[mysql]default-character-set=utf8[mysqld]init_cnotallow='SET collation_connection = utf8_unicode_ci'init_cnotallow='SET NAMES utf8'character-set-server=utf8collation-server=utf8_unicode_ciskip-character-set-client-handshakeskip-name-resolve# 开启binlog日志:目录为docker里的目录log-bin=/var/lib/mysql/mysql-bin# server_id 需保证唯一,不能和 canal 的 slaveId 重复server-id=123456binlog_format=row# test数据库开启,不设置则所有库开启binlog-do-db=test

3、重新启动mysql

docker restart mysql

4、创建用户并赋权限

查看mysql的 id:

docker ps

进入docker容器:

docker exec -it 7d /bin/bash

连接到mysql:

mysql -u root -p

创建用户并赋予权限:

GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'canal'@'%' IDENTIFIED BY 'canal' ;

刷新:

flush privileges;

5、Win10连接mysql创建user表

CREATE TABLE `user` ( `id` int(10) NOT NULL AUTO_INCREMENT, `name` varchar(25) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL, `sex` varchar(1) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL, PRIMARY KEY (`id`) USING BTREE) ENGINE = InnoDB AUTO_INCREMENT = 8 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;SET FOREIGN_KEY_CHECKS = 1;

6、创建redis

docker run -p 6379:6379 --name redis \-v /mydata/redis/data:/data \-v /mydata/redis/conf/redis.conf:/etc/redis/redis.conf \-d redis redis-server /etc/redis/redis.conf

六、安装canal

1、启动容器

docker run -it --name canal -p 11111:11111 -d canal/canal-server:v1.1.5

查看三个容器:

docker ps

2、配置canal

进入容器:

docker exec -it 56 /bin/bash

切换目录:

cd canal-server/conf/example

修改两个地方:

第一个是mysql的地址,第二个是我们创建数据库名字(可以使用默认带的,就是全部的库都进行收集binlog日志)

canal.instance.master.address=192.168.84.138:3306canal.instance.filter.regex=test\..*

3、查看日志

我们查看一下canal的日志,看是否启动成功!首先进入容器:

docker exec -it 56 /bin/bash

切换目录:

cd canal-server/logs/example/

查看日志:

cat example.log

无报错,刚刚新建的表这里也可以检测到!

4、查看canal.properties

cd /canal-server/conf

cat canal.properties

我们可以看到有很多个模式,可以把canal收集到的binlog发送到三大MQ中,或者tcp。

本次以tcp为准测试,如果大家有需求可以进行发送到MQ,往下滑都有对应的配置!

七、简单测试

1、新建springboot项目,导入依赖

2、编写测试文件

来自官方例子:

我把statis关键字删除了,方便和redis进行整合。

例子地址:

3、启动项目

4、插入一条数据

INSERT INTO user VALUES (1,'小红','女');

总结:我们测试是可以获取到binlog日志的,下面我们进入实战:实现redis缓存同步

八、实战redis同步缓存

1、编写redis序列化配置类

import org.springframework.context.annotation.Bean;import org.springframework.context.annotation.Configuration;import org.springframework.data.redis.connection.RedisConnectionFactory;import org.springframework.data.redis.core.RedisTemplate;import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;import org.springframework.data.redis.serializer.StringRedisSerializer;/** * @author wangzhenjun * @date 2022/6/30 9:24 */@Configurationpublic class RedisConfig { @Bean public RedisTemplate redisTemplate(RedisConnectionFactory connectionFactory) { RedisTemplate redisTemplate = new RedisTemplate<>(); redisTemplate.setConnectionFactory(connectionFactory); StringRedisSerializer stringRedisSerializer = new StringRedisSerializer(); redisTemplate.setKeySerializer(stringRedisSerializer); redisTemplate.setHashKeySerializer(stringRedisSerializer); Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<>(Object.class); redisTemplate.setValueSerializer(jackson2JsonRedisSerializer); redisTemplate.setHashValueSerializer(jackson2JsonRedisSerializer); redisTemplate.afterPropertiesSet(); return redisTemplate; }}

2、添加redis增删改方法

主要添加了同步到redis的两个方法,这里是2分钟就会停止监听,大家可以按自己的来调整:

int totalEmptyCount = 120;

3、测试添加

数据库插入一条:

insert into user values (1,'我是测试添加','男');

控制台捕捉到信息:

我们看到redis已经有数据了,同步成功!

4、测试更新

更细我们刚刚添加的那条数据:

update user set name = '修改了' where id = 1;

控制台捕捉到了更新信息:

redis也同步修改了!

5、测试删除

我们先多添加几条哈:

删除id为1的那条数据:

delete from user where id = 1;

控制台捕捉到了删除信息:

redis也同步删除了!

九、总结

这样就实现了一个canal的应用场景,当然也可以把binlog的数据发送到MQ来!

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:MySQL:连Explain的Type类型都没搞清楚,怎敢说精通SQL优化?
下一篇:系统上线前,SQL脚本的九大坑
相关文章