数据库、多维数据库及数据仓库的关系

网友投稿 751 2023-04-13

数据库、多维数据库及数据仓库的关系

数据库、多维数据库及数据仓库的关系

第一阶段

企业信息化达到一定程度之后,一定会有报表的需求,此时直接从业务系统的数据库进行查询。

第二阶段

直接查询业务系统数据库,很容易对业务系统造成影响,这时可能会将数据抽取出来,放在一个镜像数据库里进行查询。

第三阶段

当数据规模越来越大,报表与数据分析的需求也随之增多。开始对数据进行系统化的规划与管理时,数据仓库的雏形也已建立起来。

关系型数据库的星形(或雪花型)结构是数据仓库的常见形式之一,但不是唯一的形式,只要能做到将数据有序管理,基本上就可以称之为数据仓库。

第四阶段

基于关系数据库星型或雪花型结构所建立的数据仓库,虽然可以进行数据分析,但分析能力不强。

星型或雪花型结构虽然模拟了多维数据模型,但其本质上还是关系型数据库的表及字段模型,无法做到真正意义上面向业务的数据分析,而且这种直接建立在关系型数据库之上的模型,很难让业务人员独立进行数据分析。

第五阶段

由于多维数据库维度既业务的特性,所以基于多维数据库所建立的数据体系的分析能力要强很多,而且也能将让业务人员自主分析这一目标落地实现。

多维数据库向外提供维度与数据集市模型,数据的实际物理存储则对外屏蔽。关系型数据库可以作为多维数据库的一种底层实现,当然还有其他的方式,比如数据块文件、分布式存储等。

关系型数据库的星型(或雪花型)结构容易与多维数据库的维度与数据立方体结构产生一些混淆,主要是由于以下两点原因:

多维数据库可以使用关系数据库作为数据实际存储方案;

多维数据库的MDX与关系数据库的SQL在语法结构上的类似。

以上两点原因使得在关系数据库的星型(或雪花型)模型上使用SQL进行查询被误认为是可以进行多维分析的,实际上这是非常错误的认识,原因在于表及字段模型和维度及数据立方体模型本质上的区别。

现个人版提供全模块长期免费使用,有兴趣的小伙伴可登陆官网免费试用。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:数据库应用系统的作用
下一篇:数据库不使用外键的原因是什么
相关文章