专车数据层「架构进化」往事

网友投稿 915 2023-06-14

专车数据层「架构进化」往事

专车数据层「架构进化」往事

很多年前,读了 子柳 老师的《淘宝技术这十年》。这本书成为了我的架构启蒙书,书中的一句话像种子一样深埋在我的脑海里: “好的架构是进化来的,不是设计来的” 。

2015年,我加入神州专车订单研发团队,亲历了专车数据层「架构进化」的过程。这次工作经历对我而言非常有启发性,也让我经常感慨:“好的架构果然是一点点进化来的”。

1 单数据库架构

产品初期,技术团队的核心目标是: “快速实现产品需求,尽早对外提供服务” 。

彼时的专车服务都连同一个 SQLServer 数据库,服务层已经按照业务领域做了一定程度的拆分。

系统层面来看:

数据库瓶颈显现。频繁的磁盘操作导致数据库服务器 IO 消耗增加,同时多表关联,排序,分组,非索引字段条件查询也会让 cpu 飙升,最终都会导致数据库连接数激增;网关大规模超时。在高并发场景下,大量请求直接操作数据库,数据库连接资源不够用,大量请求处于阻塞状态。

2  SQL优化和读写分离

为了缓解主数据库的压力,很容易就想到的策略: SQL优化 。通过性能监控平台和 DBA 同学协作分析出业务慢 SQL ,整理出优化方案:

合理添加索引;减少多表 JOIN 关联,通过程序组装,减少数据库读压力;减少大事务,尽快释放数据库连接。

另外一个策略是: 读写分离 。

读写分离的基本原理是让主数据库处理事务性增、改、删操作( INSERT、UPDATE、DELETE),而从数据库处理 SELECT 查询操作。

专车架构团队提供的 框架 中,支持读写分离,于是数据层架构进化为如下图:

读写分离可以减少主库写压力,同时读从库可水平扩展。当然,读写分离依然有局限性:

读写分离可能面临主从延迟的问题,订单服务载客流程中对实时性要求较高,因为担心延迟问题,大量操作依然使用主库查询;读写分离可以缓解读压力,但是写操作的压力随着业务爆发式的增长并没有很有效的缓解。

3  业务领域分库

虽然应用层面做了优化,数据层也做了读写分离,但主库的压力依然很大。接下来,大家不约而同的想到了 业务领域分库 ,也就是:将数据库按业务领域拆分成不同的业务数据库,每个系统仅访问对应业务的数据库。

业务领域分库可以缓解核心订单库的性能压力,同时也减少系统间的相互影响,提升了系统整体稳定性。

随之而来的问题是:原来单一数据库时,简单的使用 JOIN 就可以满足需求,但拆分后的业务数据库在不同的实例上,就不能跨库使用 JOIN了,因此需要对 系统边界重新梳理,业务系统也需要重构 。

重构重点包含两个部分:

原来需要 JOIN 关联的查询修改成 RPC 调用,程序中组装数据 ;业务表适当冗余字段,通过消息队列或者异构工具同步。

4 缓存和MQ

专车服务中,订单服务是并发量和请求量最高,也是业务中最核心的服务。虽然通过业务领域分库,SQL 优化提升了不少系统性能,但订单数据库的写压力依然很大,系统的瓶颈依然很明显。

于是,订单服务引入了 缓存  和 MQ  。

在订单的载客生命周期里,订单的修改操作先修改缓存,然后发送消息到 MetaQ  ,订单落盘服务消费消息,并判断订单信息是否正常(比如有无乱序),若订单数据无误,则存储到数据库中。

核心逻辑有两点:

缓存集群中存储最近七天订单详情信息,大量订单读请求直接从缓存获取;在订单的载客生命周期里,写操作先修改缓存,通过消息队列异步落盘,这样消息队列可以起到消峰的作用,同样可以降低数据库的压力。

这次优化提升了订单服务的整体性能,也为后来订单服务库分库分表以及异构打下了坚实的基础。

5 从 SQLServer 到 MySQL

业务依然在爆炸增长,每天几十万订单,订单表数据量很快将过亿,数据库天花板迟早会触及。

订单 分库分表 已成为技术团队的共识。业界很多分库分表方案都是基于 MySQL 数据库,专车技术管理层决定先将订单库整体先从 SQLServer 迁移到 MySQL 。

迁移之前, 准备工作 很重要 :

SQLServer 和 MySQL 两种数据库语法有一些差异,订单服务必须要适配 MySQL 语法。订单 order_id 是主键自增,但在分布式场景中并不合适,需要将订单 id 调整为分布式模式。

当准备工作完成后,才开始迁移。

迁移过程分两部分: 历史全量数据迁移 和 增量数据迁移 。

历史数据全量迁移主要是 DBA 同学通过工具将订单库同步到独立的 MySQL 数据库。

增量数据迁移:因为 SQLServer 无 binlog 日志概念,不能使用 maxwell 和 canal 等类似解决方案。订单团队重构了订单服务代码,每次订单写操作的时候,会发送一条 MQ 消息到 MetaQ 。为了确保迁移的可靠性,还需要将新库的数据同步到旧库,也就是需要做到 双向同步 。

迁移流程:

首先订单服务(SQLServer版)发送订单变更消息到 MetaQ ,此时并不开启「旧库消息消费」,让消息先堆积在 MetaQ 里;然后开始迁移历史全量数据,当全量迁移完成后,再开启「旧库消息消费」,这样新订单库就可以和旧订单库数据保持同步了;开启「新库消息消费」,然后部署订单服务( MySQL 版),此时订单服务有两个版本同时运行,检测数据无误后,逐步增加新订单服务流量,直到老订单服务完全下线。

6 自研分库分表组件

业界分库分表一般有 proxy 和 client 两种流派。

proxy模式

代理层分片方案业界有 Mycat , cobar 等 。

它的优点:应用零改动,和语言无关,可以通过连接共享减少连接数消耗。缺点:因为是代理层,存在额外的时延。

client模式

应用层分片方案业界有 sharding-jdbc , *** 等。

它的优点:直连数据库,额外开销小,实现简单,轻量级中间件。缺点:无法减少连接数消耗,有一定的侵入性,多数只支持Java语言。

神州架构团队选择 自研 分库分表组件,采用了 client 模式 ,组件命名: SDDL 。

订单服务需要引入是 SDDL 的 jar 包,在配置中心配置 数据源信息  , sharding key   , 路由规则 等,订单服务只需要配置一个 datasourceId  即可。

7 分库分表策略

7.1 乘客维度

专车订单数据库的查询主维度是: 乘客 ,乘客端按乘客 user_id 和 订单 order_id 查询频率最高,我们选择 user_id 做为 sharding key  ,相同用户的订单数据存储到同一个数据库中。

分库分表组件 SDDL 和阿里开源的数据库中间件 cobar 路由算法非常类似的。

为了便于思维扩展,先简单介绍下 cobar 的分片算法。

假设现在需要将订单表平均拆分到4个分库 shard0 ,shard1 ,shard2 ,shard3 。首先将 [0-1023] 平均分为4个区段:[0-255],[256-511],[512-767],[768-1023],然后对字符串(或子串,由用户自定义)做 hash, hash 结果对1024取模,最终得出的结果 slot  落入哪个区段,便路由到哪个分库。

cobar 的默认路由算法 ,可以和 雪花算法  天然融合在一起, 订单 order_id  使用雪花算法,我们可以将 slot 的值保存在 10位工作机器ID  里。

通过订单 order_id 可以反查出 slot , 就可以定位该用户的订单数据存储在哪个分区里。

Integer getWorkerId(Long orderId) { Long workerId = (orderId >> 12) & 0x03ff; return workerId.intValue();}

专车 SDDL 分片算法和 cobar 差异点在于:

cobar 支持最大分片数是1024,而 SDDL 最大支持分库数1024*8=8192,同样分四个订单库,每个分片的 slot 区间范围是2048 ;

因为要支持8192个分片,雪花算法要做一点微调,雪花算法的10位工作机器修改成 13 位工作机器,时间戳也调整为: 38 位时间戳(由某个时间点开始的毫秒数)。

7.2  司机维度

虽然解决了主维度乘客分库分表问题,但专车还有另外一个查询维度,在司机客户端,司机需要查询分配给他的订单信息。

我们已经按照乘客 user_id 作为 sharding key ,若按照司机 driver_id 查询订单的话,需要广播到每一个分库并聚合返回,基于此,技术团队选择将乘客维度的订单数据 异构 到以司机维度的数据库里。

司机维度的分库分表策略和乘客维度逻辑是一样的,只不过 sharding key 变成了司机 driver_id 。

异构神器 canal 解析乘客维度四个分库的 binlog ,通过 SDDL 写入到司机维度的四个分库里。

这里大家可能有个疑问:虽然可以异构将订单同步到司机维度的分库里,毕竟有些许延迟,如何保证司机在司机端查询到最新的订单数据呢 ?

在 缓存和MQ 这一小节里提到:缓存集群中存储最近七天订单详情信息,大量订单读请求直接从缓存获取。订单服务会缓存司机和当前订单的映射,这样司机端的大量请求就可以直接缓存中获取,而司机端查询订单列表的频率没有那么高,异构复制延迟在10毫秒到30毫秒之间,在业务上是完全可以接受的。

7.3  运营维度

专车管理后台,运营人员经常需要查询订单信息,查询条件会比较复杂,专车技术团队采用的做法是:订单数据落盘在乘客维度的订单分库之后,通过 canal 把数据同步到Elastic Search。

7.4 小表广播

业务中有一些配置表,存储重要的配置,读多写少。在实际业务查询中,很多业务表会和配置表进行联合数据查询。但在数据库水平拆分后,配置表是无法拆分的。

小表广播的原理是:将小表的所有数据(包括增量更新)自动广播(即复制)到大表的机器上。这样,原来的分布式 JOIN 查询就变成单机本地查询,从而大大提高了效率。

专车场景下,小表广播是非常实用的需求。比如: 城市表 是非常重要的配置表,数据量非常小,但订单服务,派单服务,用户服务都依赖这张表。

通过 canal 将基础配置数据库城市表同步到订单数据库,派单数据库,用户数据库。

8 平滑迁移

分库分表组件 SDDL  研发完成,并在生产环境得到一定程度的验证后,订单服务从单库 MySQL 模式迁移到分库分表模式条件已经成熟。

迁移思路其实和 从 SQLServer 到 MySQL 非常类似。

整体迁移流程:

DBA 同学准备乘客维度的四个分库,司机维度的四个分库 ,每个分库都是最近某个时间点的全量数据;八个分库都是全量数据,需要按照分库分表规则删除八个分库的冗余数据 ;开启正向同步,旧订单数据按照分库分表策略落盘到乘客维度的分库,通过 canal 将乘客维度分库订单数据异构复制到司机维度的分库中;开启反向同步,修改订单应用的数据源配置,重启订单服务,订单服务新创建的订单会落盘到乘客维度的分库,通过 canal 将乘客维度分库订单数据异构到 全量订单库 以及司机维度的数据库;验证数据无误后,逐步更新订单服务的数据源配置,完成整体迁移。

9 数据交换平台

专车订单已完成分库分表 , 很多细节都值得复盘:

全量历史数据迁移需要 DBA 介入 ,技术团队没有成熟的工具或者产品轻松完成;增量数据迁移通过 canal 来实现。随着专车业务的爆发增长,数据库镜像,实时索引构建,分库异构等需求越来越多,虽然canal 非常优秀,但它还是有瑕疵,比如缺失任务控制台,数据源管理能力,任务级别的监控和报警,操作审计等功能。

面对这些问题,架构团队的目标是打造一个平台,满足各种异构数据源之间的实时增量同步和离线全量同步,支撑公司业务的快速发展。

基于这个目标,架构团队自研了 dataLink 用于增量数据同步,深度定制了阿里开源的 dataX 用于全量数据同步。

10 写到最后

专车 架构进化 之路并非一帆风顺,也有波折和起伏,但一步一个脚印,专车的技术储备越来越深厚。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Redis 内存满了怎么办?这样设置才正确!
下一篇:Redis6通信协议升级至RESP3,一口气看完13种新数据类型
相关文章