TiDB Lightning导入超大型txt文件实践

网友投稿 550 2023-04-09

背景

TiDB 提供了很多种数据迁移的方式,但这些工具/方案普遍对MySQL比较友好,一旦涉及到异构数据迁移,就不得不另寻出路,借助各种开源或商业的数据同步工具。其实数据在不同系统的流转当中,有一种格式是比较通用的,那就是txt/csv这类文件,把数据用约定好的分隔符换行符等标记存放在一起,比如最常见的逗号分隔:

TiDB Lightning导入超大型txt文件实践

aa,11,a1 bb,22,b2

这个文件可以保存为data.txt或者data.csv,一般主流的数据库都支持把这类文件直接导入到对应的表中。

csv本身就是逗号分隔符文件,但是由于逗号太常见了很容易和真实数据混淆,往往会用比较复杂的字符作为分隔符,这时候txt文件就更灵活一些。

在 TiDB 中我们想导入csv文件可以选择的方式有Load DataLightning,但是从官方文档得知,这两种方式都没有明确表示支持txt文件导入。但是经过实测,实际上都能够支持txt格式文件,Load Data参考csv导入即可,本文重点介绍Lightning如何导入txt数据,毕竟数据量很大的时候还得靠Lightning

有人可能会质疑,不就是改个文件扩展名就能解决的问题何必搞得这么麻烦,要知道有些时候用户并不接受把txt强制改成csv,担心有损坏数据风险。。

咱也不敢说咱也不敢问,只能默默研究lightning。

Lightning 导入简单的txt文件

虽然官网文档明确表示 TiDB Lightning 支持以下文件类型:

Dumpling 生成的文件

CSV 文件

Amazon Aurora 生成的 Apache Parquet 文件

但并没有说不支持txt,这就会让人抱有一丝幻想,尝试用默认的方式导入txt:

cd /data/loadtxt vi test.t.txt a#11 b#22 c#33vi lightning-task.yaml ​ [lightning] level = "info" file = "tidb-lightning.log" index-concurrency = 2 table-concurrency = 6 ​ [tikv-importer] backend = "local" sorted-kv-dir = "/home/tidb/sorted" ​ [mydumper] data-source-dir = "/data/loadtxt" no-schema = true filter = [*.*] ​ [mydumper.csv] separator = "#" delimiter = terminator = "" header = false not-null = false null = \N backslash-escape = true trim-last-separator = false ​ [tidb] host = "10.3.xx.xx" port = 4000 user = "root" password = "xxxxxx" status-port = 10080 pd-addr = "10.3.xx.xx:2379" ​ [checkpoint] enable = false ​ [post-restore] checksum = true analyze = false

如果这样运行 Lightning 你会发现并不会有任何报错信息,甚至日志最后还会提示:

[2022/09/15 16:53:10.846 +08:00] [INFO] [restore.go:442] ["the whole procedure completed"] [takeTime=108.167654ms] [] [2022/09/15 16:53:10.847 +08:00] [INFO] [main.go:106] ["tidb lightning exit"] [finished=true]

但是表里面始终没有数据进来,仔细分析日志就会发现,txt会被 Lightning 默认的 filter 给过滤掉:

[2022/09/15 16:53:10.721 +08:00] [INFO] [lightning.go:423] ["load data source start"] [2022/09/15 16:53:10.721 +08:00] [INFO] [loader.go:310] ["[loader] file is filtered by file router"] [path=test.t.txt] [2022/09/15 16:53:10.721 +08:00] [INFO] [lightning.go:426] ["load data source completed"] [takeTime=231.822µs] []

事实上,Lightning 提供了文件路由的特性,这也是 Lightning 能够导入 Aurora parquet 文件的原因,Aurora 的数据文件并不是我们熟知的库名.表名.csv|sql这种格式,正是通过自定义解析文件名才实现了 Aurora 数据导入。参考文档上的一段配置信息:

# [[mydumper.files]] # 解析 AWS Aurora parquet 文件所需的表达式 # pattern = (?i)^(?:[^/]*/)*([a-z0-9_]+)\.([a-z0-9_]+)/(?:[^/]*/)*(?:[a-z0-9\-_.]+\.(parquet))$ # schema = $1 # table = $2 # type = $3

文件路由通过mydumper.files配置实现,它用正则定义了库名表名的解析规则。我们参考这个规则,在前面的lightning-task.yaml中增加这样一段配置:

[[mydumper.files]] pattern = test.t.txt schema = test table = t type = csv

从type字段测试得出,Lightning 确实是不支持txt文件,但是这里通过正则解析巧妙的绕过了这个问题,把txt当做csv去处理。当强制给type设置为txt的时候,你会收到如下报错:

tidb lightning encountered error: [Lightning:Storage:ErrStorageUnknown]list file failed: apply file routing on file test.t.txt failed: unknown source type txt

至此,我们实现了一个简单的txt文件导入。

Lightning 对复杂分隔符的处理

之所以选择用txt文件保存数据,就是因为它支持更多复杂的分隔符。一般来说,为了避免和真实数据冲突,我们会选用组合字符或者不可见字符来作为分隔符,比如^&^ESC这种。

不可见字符是没办法直接写在配置文件中的,好在 Lightning 支持使用 Unicode 编码格式。 假设现在使用键盘上的ESC作为分隔符,那就可以在配置文件中这样定义:

[mydumper.csv] separator = "\u001b"

toml文件中,Unicode 字符需要使用 \u 来转义,001b 就是ESC键对应的 Unicode 编码,并且这里字段值必须要用双引号包裹起来,单引号不行,需要注意。

Unicode 属于通用的字符编码规范,所有平台、系统、编程语言都对它有很好支持,建议在使用不常见字符时优先考虑使用 Unicode。

同样的,如果分隔符是多个字符,比如:

a#$11 b#$22 c#$33

也能使用 Unicode 编码替换:

[mydumper.csv] separator = "\u0023\u0024" # 或者 separator = "#$"

Lightning 对自定义文件名解析的处理

回到刚才新加的一段支持txt导入的配置:

[[mydumper.files]] pattern = test.t.txt schema = test table = t type = csv

可以发现这个配置是写死了库名、表名、以及文件名的,单个文件导入这样做没问题,如果有一大批txt需要导入,每个文件写一套配置肯定是不行,这时候需要用到它的正则解析特性。这个解析的核心就是,告诉 Lightning 如何提取需要导入的文件以及它对应的库名表名。

假设我现在有一批从其他库导出的txt文件,名称如下:

oms_order_info_f.txt usr_user_info_f.txt wms_warehouse_f.txt

一般来说文件名都不会随便乱起一个,会带上自身的业务属性。比如上面这个例子第一个单词表示业务单元,中间的单词是业务表,最后的f表示这是个导出的文件。基于规则固定的情况下,我们就可以使用正则提取需要的信息,得到如下配置参数:

[[mydumper.files]] pattern = ([a-z]+)_([a-z0-9_]+)_f.txt schema = $1 table = $2 type = csv

这样一来,只有符合pattern定义的文件才被Lightning处理,比如刚才的test.t.txt就会被忽略掉。其次schema和table变得更加灵活,除了直接从正则参数提取,还能加入我们想要的prefix,比如把文件都导入到以bak_开头的表中:

table = bak_$2

有了这个特性,就算你的数据文件不是库名.表名.{index}.csv|txt这种格式,也能通过配置参数解决了。

Lightning 对特殊格式的处理

上游的数据总是千奇百怪,往往无法预料会蹦出个什么格式,在数据导入的过程中有两点我觉得需要重点关注一下。

1、如何处理空值(null)

Lightning 定义了如下的空值解析规则(搬运自官网):

[mydumper.csv] # CSV 文件是否包含 NULL。 # 如果 not-null = true,CSV 所有列都不能解析为 NULL。 not-null = false # 如果 not-null = false(即 CSV 可以包含 NULL), # 为以下值的字段将会被解析为 NULL。 null = \N

以上配置的含义是如果碰到aa,\N,11这样的数据,那么中间字段在数据库里面会是 NULL。通常情况下我们会碰到这样的数据aa,,11,那么就需要设置null =

如果不希望数据库里面存在 NULL 值,那么把not-null设置为true即可。

2、如何处理转义字符

Lightning 定义了如下的转义规则(搬运自官网):

[mydumper.csv] # 是否对字段内“\“进行转义 backslash-escape = true

假设恰好碰到这样的数据aa,\,11,上面的配置会把第二个分隔符当做真实数据保留,实际只会导入2个字段,插入的值分别是aa,11,使用的时候千万要注意。

如果要把\当做真实数据写入第二个字段,那么把上述配置设置为false即可。

大文件导入优化

Lightning 的最佳工作模式是处理大量的小文件,官网给出的建议值是单个数据文件不超过256M,经过实测发现,默认情况下 Lightning 对大文件的处理确实不够理想,风险包括:

无法充分利用机器资源

导入速度极慢

程序易中断报错

进程假死无响应

不仅仅是 Lightning ,我觉得整个 TiDB 的使用精髓就是拆分拆分拆分,大而重的事情虽然 TiDB 能做,但不是它擅长的。类似于大事务 SQL 一样,这里我们需要把大文件做拆分。我使用过的有两种方式。

1、Lightning 严格模式

如果要导入的文件能够保证真实数据不包含换行符(\r\n),那么可以开启 Lightning 的严格模式来自动拆分大文件,达到加速目的。

相关参数为(务必仔细阅读参数说明):

[mydumper] # “严格”格式的导入数据可加快处理速度。 # strict-format = true 要求: # 在 CSV 文件的所有记录中,每条数据记录的值不可包含字符换行符(U+000A 和 U+000D,即 \r 和 \n) # 甚至被引号包裹的字符换行符都不可包含,即换行符只可用来分隔行。 # 导入数据源为严格格式时,TiDB Lightning 会快速定位大文件的分割位置进行并行处理。 # 但是如果输入数据为非严格格式,可能会将一条完整的数据分割成两部分,导致结果出错。 # 为保证数据安全而非追求处理速度,默认值为 false。 strict-format = false # 如果 strict-format = true,TiDB Lightning 会将 CSV 大文件分割为多个文件块进行并行处理。max-region-size 是分割后每个文件块的最大大小。 # max-region-size = "256MiB" # 默认值

2、手动切分文件

严格模式虽然好用,但是拆分逻辑在 Lightning 内部完成,我们无法知道具体拆分细节,如果出现数据问题就很难排查,手动拆分文件相对来说比较可控,也可以作为备选方案。

手动拆分的核心是使用 Linux 的split命令,这里推荐一个基于split封装的脚本,功能强大,为 Lightning 而生。

https://github.com/jansu-dev/TiChange_for_lightning

感谢作者的分享 @jansu-dev

TiChange 用起来最舒服的就是它能把拆分后的文件命名为 Lightning 需要的格式,这样就不用额外写正则去定义文件路由,使用方法可以参考 Github 文档,非常简单。

[root@localhost tichange]# ./tichange.sh -i /data/loadtxt/golang_gen.txt -o /home/tichange -m test.t3 Option i == /data/loadtxt/golang_gen.txt Option o == /home/tichange Option m == test.t3 --------------------------------------------------------------------------- ------------ TiChange starting ------------------------------------------ --------------------------------------------------------------------------- ------------ using below information for tidb-lightning.toml ------------ --------------------------------------------------------------------------- Please write the string path to tidb-lightning.toml config file!!! and ,delete the dealed files by hand after imported data into database!!! [mydumper] data-source-dir = "/home/tichange/e46718e_operating_dir" [mydumper] no-schema = true --------------------------------------------------------------------------- [root@localhost tichange]# ll /home/tichange/e46718e_operating_dir total 20889132 -rw-r--r--. 1 root root 39888931 Sep 21 16:28 test.t3.00000000.csv -rw-r--r--. 1 root root 41000041 Sep 21 16:28 test.t3.00000001.csv -rw-r--r--. 1 root root 41000041 Sep 21 16:28 test.t3.00000002.csv -rw-r--r--. 1 root root 41000041 Sep 21 16:28 test.t3.00000003.csv -rw-r--r--. 1 root root 41000041 Sep 21 16:28 test.t3.00000004.csv -rw-r--r--. 1 root root 41000041 Sep 21 16:28 test.t3.00000005.csv ...... -rw-r--r--. 1 root root 42978543 Sep 21 16:28 test.t3.00000499.csv

宝贵提示:如果不需要替换文件里的分隔符和界定符为csv标准格式,可以把源码中这部分的处理逻辑(多个sed操作)去掉,能够极大提高拆分速度。

我用一个20G的文件得到一组测试数据,供大家参考:

[root@localhost loadtxt]# ll -h total 20G -rw-r--r--. 1 root root 20G Sep 21 10:05 golang_gen.txt指标参考值测试机器虚拟机4c8g ssd盘,local模式导入原始文件大小20G,2个字段,5亿行数据直接导入31m14s严格模式13m16s手动拆分100万行做拆分,总耗时13m54s

生产环境实践

近期上线的一个项目约有100个铺底数据文件,累计大小12T+,单个文件最大2.1T,采用手动拆分+分批导入的方案,6台物理机同时干活,充分利用现有的机器资源。

最后累计在1天内完成数据导入,这里涉及到生产敏感数据不过多描述。

总结

毫无疑问,在往 TiDB 导入大数据量的时候首选一定是 Lightning ,它不仅支持官网明码标注的文件类型,还支持txt这样的彩蛋,好好研究一下 Lightning 是很有必要的。

另外,Lightning 也随着 TiDB 的版本升级在不断强大,建议优先使用高版本的 Lightning ,可以避免一部分已知的bug,还能体验更好的性能。

虽然全篇都在以txt文件作为演示,但csv文件也同样适用前面描述的几种处理方式。

最后,希望本文能帮助到正在受大文件导入折磨的小伙伴们~

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:刘奇:能否掌控复杂性,决定着分布式数据库的生死存亡
下一篇:k8s Tidb实践-部署篇
相关文章