MYSQL 那点破事!索引、SQL调优、事务、B+树、分表 ....

网友投稿 856 2023-06-03

MYSQL 那点破事!索引、SQL调优、事务、B+树、分表 ....

MYSQL 那点破事!索引、SQL调优、事务、B+树、分表 ....

大家好,我是Tom哥~

为了便于大家查找问题,了解全貌,整理个目录,我们可以快速全局了解关于mysql数据库,面试官一般喜欢问哪些问题

接下来,我们逐条来看看每个问题及答案

MyISAM 和 InnoDB 的区别?

答案:InnoDB 支持 事务、外键、聚集索引,通过MVCC来支持高并发,索引和数据存储在一起。InnoDB 不保存表的具体行数,执行 select count(*) from table 时需要全表扫描。而MyISAM 用一个变量保存了整个表的行数。

InnoDB 最小的锁粒度是行锁,MyISAM 最小的锁粒度是表锁,并发能力低。MySQL 将默认存储引擎是 InnoDB

mysql 锁有哪些类型?

答案:mysql锁分为共享锁( S lock ) 、排他锁 ( X lock ),也叫做读锁和写锁。根据粒度,可以分为表锁、页锁、行锁。

什么是间隙锁?

答案:间隙锁是可重复读级别下才会有的锁,mysql会帮我们生成了若干左开右闭的区间,结合MVCC和间隙锁可以解决幻读问题。

如何避免死锁?

答案:死锁的四个必要条件:1、互斥 2、请求与保持 3、环路等待 4、不可剥夺。

数据库的隔离级别?

答案:读未提交、读已提交、可重复读(mysql的默认级别,每次读取结果都一样,但是有可能产生幻读)、串行化。

Mysql有哪些类型的索引?

答案:

普通索引:一个索引只包含一个列,一个表可以有多个单列索引。唯一索引:索引列的值必须唯一,但允许有空值复合索引:多列值组成一个索引,专门用于组合搜索,其效率大于索引合并聚簇索引:也称为主键索引,是一种数据存储方式。B+Tree结构,非叶子节点包含健值和指针,叶子节点包含索引列和行数据。一张表只能有一个聚簇索引。非聚簇索引:不是聚簇索引,就是非聚簇索引。叶子节点只是存索引列和主键id。如果sql还要返回除了索引列的其他字段信息,需要回表,第一次索引一般是顺序IO,回表的操作属于随机IO。回表的次数越多,性能越差。此时我们推荐覆盖索引

什么是覆盖索引和回表?

答案:

1、覆盖索引,指的是在一次查询中,一个索引包含所有需要查询的字段的值,可能是返回值或where条件

select buyer_id from order where money>100

假如我们创建了一个(money,buyer_id)的联合索引,索引的叶子节点包含了buyer_id的信息,则不会再回表查询。

2、回表,指查询时一些字段值拿不到,需要到主键索引B+树再查一次。

Mysql的最左前缀原则?

答案:即最左优先,在检索数据时从联合索引的最左边开始匹配,直到遇到范围查询(如:> 、< 、between、like等)

例子:where a = 1 and b = 2 and c > 3 and d = 4 ,如果建立(a,b,c,d)组合索引,d是用不到索引的;如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。

线上SQL的调优经验?

答案:

1、slow_query_log 日志中收集到的慢 SQL ,结合 explain 分析是否命中索引。2、减少索引扫描行数,有针对性的优化慢 SQL。3、建立联合索引,由于联合索引的每个叶子节点包含检索字段的信息,按最左前缀原则匹配后,再按其它条件过滤,减少回表的数据量。4、还可以使用虚拟列和联合索引来提升复杂查询的执行效率。

官方为什么建议采用自增id 作为主键?

答案:自增id是连续的,插入过程也是顺序的,总是插入在最后,减少了页分裂,有效减少数据的移动。所以尽量不要使用字符串(如:UUID)作为主键。

索引为什么采用B+树,而不用B-树,红黑树?

答案:提升查询速度,首先要减少磁盘IO次数,也就是要降低树的高度。

平衡二叉树、红黑树,都属于二叉树。时间复杂度为O(n),当表的数据量上千万时,树的深度很深,mysql读取时消耗大量 IO。另外,InnoDB引擎采用页为单位读取,每个节点一页,但是二叉树每个节点储存一个关键词,导致空间浪费。B-树,非叶子节点存储数据,占用较多空间,导致每个节点的指针少很多,无形增加了树的深度。B+树数据都存储在叶子节点,非叶子节点只存储健值+指针,索引树更加扁平,三层深度可以支持千万级表存储。同时叶子节点之间通过链表关联,范围查找更快。

事务的特性有哪些?

答案:ACID

原子性。一个事务中的操作要么全部成功,要么全部失败。

持久性。永久保存在数据库中。

一致性。总是从一个一致性的状态转换到另一个一致性的状态

隔离性。一个事务的修改在提交前,其他事务是感知不到的

如何实现分布式事务?

答案:

1、流水任务,最终一致性,前提是接口要支持幂等性

2、事务消息

3、二阶段提交

4、三阶段提交

5、TCC

6、Seata 框架

日常工作中,MySQL 如何做优化?

答案:

1、分页优化。比如电梯直达,limit 100000,10 先查找起始的主键id,再通过id>#{value}往后取10条2、尽量使用覆盖索引,索引的叶节点中已经包含要查询的字段,减少回表查询3、SQL优化(索引优化、小表驱动大表、虚拟列、适当增加冗余字段减少连表查询、联合索引、排序优化、慢日志 Explain 分析执行计划)。4、设计优化(避免使用NULL、用简单数据类型如int、减少 text 类型、分库分表)。5、硬件优化(使用*** 减少 I/O 时间、足够大的网络带宽、尽量大的内存)

mysql 主从同步具体过程?

答案:

master主库,有数据更新,将此次更新的事件类型写入到主库的binlog文件中主库会创建log dump 线程通知slave有数据更新slave,向master节点的 log dump线程请求一份指定binlog文件位置的副本,并将请求回来的binlog存到本地的Relay log 中继日志中slave 再开启一个SQL 线程读取Relay log事件,并在本地执行redo操作。将发生在主库的事件在本地重新执行一遍,从而保证主从数据同步

什么是主从延迟?

答案:指一个写入SQL操作在主库执行完后,将数据完整同步到从库会有一个时间差,称之为主从延迟。计算公式:

主库生成一条写入SQL的binlog,里面会有一个时间字段,记录写入的时间戳 t1binlog 同步到从库后,一旦开始执行,取当前时间 t2t2-t1,就是延迟时间

注意:不同服务器要保持时钟一致

主从延迟排查方法?

答案:通过 show slave status 命令输出的Seconds_Behind_Master参数的值来判断

为零:表示主从复制良好正值:表示主从已经出现延时,数字越大,表示从库延迟越严重

主从延迟要怎么解决?

答案:

看业务的接受程度。如果不能接受延迟,那么建议强制走主库查询可以考虑引入缓存,更新主库后同步写入缓存,保证缓存的及时性提升从库的机器配置,提高从库binlog的同步效率缩短主、从库的网络距离,减少binlog的网络传输时间一主多从,每个从库都启一个线程从主库同步 binlog,导致主库压力过大,可以采用canal 增量订阅&消费组件,缓解主库压力。因为数据库必须要等到事务完成之后才会写入binlog,所以减少大事务的执行,尽量控制数量,分批执行。5.6版本之前,从库是单线程复制,当遇到执行慢的sql时,就会阻塞后面的同步。5.7 版本后支持多线程复制,可以在从服务上设置slave_parallel_workers为一个大于0的数,然后把slave_parallel_type参数设置为LOGICAL_CLOCK为从库增加浮动IP,并通过脚本检测从库的延迟,延迟大于指定阈值时,将浮动IP切换至Master库,追平后再切换回从库。

如果数据量太大怎么办?

答案:mysql表的数据量一般控制在千万级别,如果再大的话,就要考虑分库分表。除了分表外,列举了面对海量数据业务的一些常见优化手段

缓存加速读写分离垂直拆分分库分表冷热数据分离ES助力复杂搜索NoSQLNewSQL

分表后ID如何保证全局唯一呢?

答案:分库分表后,多张表共用一套全局id,原来单表主键自增方式满足不了要求。我们需要重新设计一套id生成器。特点:全局唯一、高性能、高可用、方便接入。

UUID数据库自增ID数据库的号段模式,每个业务定义起始值、步长,一次拉取多个id号码基于Redis,通过incr命令实现ID的原子性自增。雪花算法(Snowflake)市面的一些开源框架,如:百度(uid-generator),美团(Leaf), 滴滴(Tinyid)等

分表后可能遇到的哪些问题?

答案:分表后,与单表的最大区别是有分表键sharding_key,用来路由具体的物理表,以电商为例,有买家和卖家两个维度,以buyer_id路由,无法满足卖家的需求,反之同样道理。如何解决?

分买家库和卖家库,将买家库做为写库,保存完整的数据关系。同时将数据异构同步一份到卖家库,卖家库可以只存储seller_id,order_id,buyer_id 等几个简单关系字段即可,以seller_id作为分表键多线程扫描,分段查找,然后再聚合结果另外也可以存到ES中,支持多维度复杂搜索

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:盘点市面上主流的时序数据库
下一篇:Flink SQL 知其所以然:不会连最适合 Flink SQL的 ETL 和 group agg 场景都没见过吧?
相关文章