三篇文章了解 TiDB 技术内幕 - 谈调度

网友投稿 872 2023-05-20

三篇文章了解 TiDB 技术内幕 - 谈调度

为什么要进行调度

先回忆一下            三篇文章了解 TiDB 技术内幕 - 说存储            提到的一些信息,TiKV 集群是 TiDB 数据库的分布式 KV 存储引擎,数据以 Region 为单位进行复制和管理,每个 Region 会有多个 Replica(副本),这些 Replica 会分布在不同的 TiKV 节点上,其中 Leader 负责读/写,Follower 负责同步 Leader 发来的 raft log。了解了这些信息后,请思考下面这些问题:

如何保证同一个 Region 的多个 Replica 分布在不同的节点上?更进一步,如果在一台机器上启动多个 TiKV 实例,会有什么问题?        TiKV 集群进行跨机房部署用于容灾的时候,如何保证一个机房掉线,不会丢失 Raft Group 的多个 Replica?        添加一个节点进入 TiKV 集群之后,如何将集群中其他节点上的数据搬过来?        当一个节点掉线时,会出现什么问题?整个集群需要做什么事情?如果节点只是短暂掉线(重启服务),那么如何处理?如果节点是长时间掉线(磁盘故障,数据全部丢失),需要如何处理?        假设集群需要每个 Raft Group 有 N 个副本,那么对于单个 Raft Group 来说,Replica 数量可能会不够多(例如节点掉线,失去副本),也可能会过于多(例如掉线的节点又回复正常,自动加入集群)。那么如何调节 Replica 个数?        读/写都是通过 Leader 进行,如果 Leader 只集中在少量节点上,会对集群有什么影响?        并不是所有的 Region 都被频繁的访问,可能访问热点只在少数几个 Region,这个时候我们需要做什么?        集群在做负载均衡的时候,往往需要搬迁数据,这种数据的迁移会不会占用大量的网络带宽、磁盘 IO 以及 CPU?进而影响在线服务?

这些问题单独拿出可能都能找到简单的解决方案,但是混杂在一起,就不太好解决。有的问题貌似只需要考虑单个 Raft Group 内部的情况,比如根据副本数量是否足够多来决定是否需要添加副本。但是实际上这个副本添加在哪里,是需要考虑全局的信息。整个系统也是在动态变化,Region 分裂、节点加入、节点失效、访问热点变化等情况会不断发生,整个调度系统也需要在动态中不断向最优状态前进,如果没有一个掌握全局信息,可以对全局进行调度,并且可以配置的组件,就很难满足这些需求。因此我们需要一个中心节点,来对系统的整体状况进行把控和调整,所以有了 PD 这个模块。

调度的需求

上面罗列了一大堆问题,我们先进行分类和整理。总体来看,问题有两大类:

作为一个分布式高可用存储系统,必须满足的需求,包括四种:

副本数量不能多也不能少        副本需要分布在不同的机器上        新加节点后,可以将其他节点上的副本迁移过来        节点下线后,需要将该节点的数据迁移

作为一个良好的分布式系统,需要优化的地方,包括:

维持整个集群的 Leader 分布均匀        维持每个节点的储存容量均匀        维持访问热点分布均匀        控制 Balance 的速度,避免影响在线服务        管理节点状态,包括手动上线/下线节点,以及自动下线失效节点

满足第一类需求后,整个系统将具备多副本容错、动态扩容/缩容、容忍节点掉线以及自动错误恢复的功能。满足第二类需求后,可以使得整体系统的负载更加均匀、且可以方便的管理。

为了满足这些需求,首先我们需要收集足够的信息,比如每个节点的状态、每个 Raft Group 的信息、业务访问操作的统计等;其次需要设置一些策略,PD 根据这些信息以及调度的策略,制定出尽量满足前面所述需求的调度计划;最后需要一些基本的操作,来完成调度计划。

调度的基本操作

我们先来介绍最简单的一点,也就是调度的基本操作,也就是为了满足调度的策略,我们有哪些功能可以用。这是整个调度的基础,了解了手里有什么样的锤子,才知道用什么样的姿势去砸钉子。

上述调度需求看似复杂,但是整理下来最终落地的无非是下面三件事:

增加一个 Replica        删除一个 Replica        将 Leader 角色在一个 Raft Group 的不同 Replica 之间 transfer

刚好 Raft 协议能够满足这三种需求,通过 AddReplica、RemoveReplica、TransferLeader 这三个命令,可以支撑上述三种基本操作。

信息收集

调度依赖于整个集群信息的收集,简单来说,我们需要知道每个 TiKV 节点的状态以及每个 Region 的状态。TiKV 集群会向 PD 汇报两类消息:

每个 TiKV 节点会定期向 PD 汇报节点的整体信息

TiKV 节点(Store)与 PD 之间存在心跳包,一方面 PD 通过心跳包检测每个 Store 是否存活,以及是否有新加入的 Store;另一方面,心跳包中也会携带这个            Store 的状态信息            ,主要包括:

总磁盘容量        可用磁盘容量        承载的 Region 数量        数据写入速度        发送/接受的 Snapshot 数量(Replica 之间可能会通过 Snapshot 同步数据)        是否过载        标签信息(标签是具备层级关系的一系列 Tag)

每个 Raft Group 的 Leader 会定期向 PD 汇报信息

每个 Raft Group 的 Leader 和 PD 之间存在心跳包,用于汇报这个            Region 的状态            ,主要包括下面几点信息:

Leader 的位置        Followers 的位置        掉线 Replica 的个数        数据写入/读取的速度

PD 不断的通过这两类心跳消息收集整个集群的信息,再以这些信息作为决策的依据。除此之外,PD 还可以通过管理接口接受额外的信息,用来做更准确的决策。比如当某个 Store 的心跳包中断的时候,PD 并不能判断这个节点是临时失效还是永久失效,只能经过一段时间的等待(默认是 30 分钟),如果一直没有心跳包,就认为是 Store 已经下线,再决定需要将这个 Store 上面的 Region 都调度走。但是有的时候,是运维人员主动将某台机器下线,这个时候,可以通过 PD 的管理接口通知 PD 该 Store 不可用,PD 就可以马上判断需要将这个 Store 上面的 Region 都调度走。

调度的策略

PD 收集了这些信息后,还需要一些策略来制定具体的调度计划。

一个 Region 的 Replica 数量正确

当 PD 通过某个 Region Leader 的心跳包发现这个 Region 的 Replica 数量不满足要求时,需要通过 Add/Remove Replica 操作调整 Replica 数量。出现这种情况的可能原因是:

某个节点掉线,上面的数据全部丢失,导致一些 Region 的 Replica 数量不足        某个掉线节点又恢复服务,自动接入集群,这样之前已经补足了 Replica 的 Region 的 Replica 数量多过,需要删除某个 Replica        管理员调整了副本策略,修改了        max-replicas        的配置

一个 Raft Group 中的多个 Replica 不在同一个位置

注意第二点,『一个 Raft Group 中的多个 Replica 不在同一个位置』,这里用的是『同一个位置』而不是『同一个节点』。在一般情况下,PD 只会保证多个 Replica 不落在一个节点上,以避免单个节点失效导致多个 Replica 丢失。在实际部署中,还可能出现下面这些需求:

多个节点部署在同一台物理机器上        TiKV 节点分布在多个机架上,希望单个机架掉电时,也能保证系统可用性        TiKV 节点分布在多个 IDC 中,希望单个机房掉电时,也能保证系统可用

这些需求本质上都是某一个节点具备共同的位置属性,构成一个最小的容错单元,我们希望这个单元内部不会存在一个 Region 的多个 Replica。这个时候,可以给节点配置            lables            并且通过在 PD 上配置            location-labels            来指明哪些 lable 是位置标识,需要在 Replica 分配的时候尽量保证不会有一个 Region 的多个 Replica 所在结点有相同的位置标识。

副本在 Store 之间的分布均匀分配

前面说过,每个副本中存储的数据容量上限是固定的,所以我们维持每个节点上面,副本数量的均衡,会使得总体的负载更均衡。

Leader 数量在 Store 之间均匀分配

Raft 协议要读取和写入都通过 Leader 进行,所以计算的负载主要在 Leader 上面,PD 会尽可能将 Leader 在节点间分散开。

访问热点数量在 Store 之间均匀分配

每个 Store 以及 Region Leader 在上报信息时携带了当前访问负载的信息,比如 Key 的读取/写入速度。PD 会检测出访问热点,且将其在节点之间分散开。

各个 Store 的存储空间占用大致相等

每个 Store 启动的时候都会指定一个 Capacity 参数,表明这个 Store 的存储空间上限,PD 在做调度的时候,会考虑节点的存储空间剩余量。

控制调度速度,避免影响在线服务

调度操作需要耗费 CPU、内存、磁盘 IO 以及网络带宽,我们需要避免对线上服务造成太大影响。PD 会对当前正在进行的操作数量进行控制,默认的速度控制是比较保守的,如果希望加快调度(比如已经停服务升级,增加新节点,希望尽快调度),那么可以通过 pd-ctl 手动加快调度速度。

支持手动下线节点

当通过 pd-ctl 手动下线节点后,PD 会在一定的速率控制下,将节点上的数据调度走。当调度完成后,就会将这个节点置为下线状态。

调度的实现

了解了上面这些信息后,接下来我们看一下整个调度的流程。

PD 不断的通过 Store 或者 Leader 的心跳包收集信息,获得整个集群的详细数据,并且根据这些信息以及调度策略生成调度操作序列,每次收到 Region Leader 发来的心跳包时,PD 都会检查是否有对这个 Region 待进行的操作,通过心跳包的回复消息,将需要进行的操作返回给 Region Leader,并在后面的心跳包中监测执行结果。注意这里的操作只是给 Region Leader 的建议,并不保证一定能得到执行,具体是否会执行以及什么时候执行,由 Region Leader 自己根据当前自身状态来定。

总结

本篇文章讲的东西,大家可能平时很少会在其他文章中看到,每一个设计都有背后的考量,希望大家能了解到一个分布式存储系统在做调度的时候,需要考虑哪些东西,如何将策略、实现进行解耦,更灵活的支持策略的扩展。

至此三篇文章已经讲完,希望大家能够对整个 TiDB 的基本概念和实现原理有了解,后续我们还会写更多的文章,从架构以及代码级别介绍 TiDB 的更多内幕。如果大家有问题,欢迎发邮件到            shenli@pingcap.com            进行交流。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:使用 Ansible 安装部署 TiDB
下一篇:使用 Python 配合 Redis 超越缓存
相关文章