麒麟v10 上部署 TiDB v5.1.2 生产环境优化实践
652
2023-05-19
点赞功能,用MySQL还是Redis
点赞功能是目前app开发基本的功能
今天我们就来聊聊 点赞、评论、收藏等这些场景的db数据库设计问题,
1. 我们先来看看场景的需求:
显示点赞数量判断用户是否点过赞,用于去重,必须的判断显示个人点赞列表,一般在用户中心显示文章点赞列表
我们先看一下头条和微博的例子
这两个都是具有顶级流量的,后端肯定有复杂的架构,我们今天只谈大众化的方案。
2.1 mysql方案
mysql方案, 随着nosql的流行,大数据的持续热点,但是mysql仍然不可替代,对于大多数的中小项目,低于千万级的数据量,采用mysql分表+cache,是完全可以胜任的,而且稳定性是其他方案无可比拟的:
文章表 create table post { post_id int(11) NOT NULL AUTO_INCREMENT, ...... star_num int(11) COMMENT '点赞数量' } 用户表 create table user { user_id int(11) NOT NULL AUTO_INCREMENT, ...... star_num int(11) COMMENT '点赞数量' } 点赞表 create table star { id int(11) NOT NULL AUTO_INCREMENT, post_id, user_id, ...... }
常用的查询:
查询用户点赞过的文章 select post_id from star where user_id=? 查询文章的点赞用户 select user_id from star where post_id=?
点赞数量可以通过定时异步统计更新到post和user 表中。
数据量不大的时候,这种设计基本可以满足需求了,
缺点:
数据量大时,一张表在查询时压力巨大,需要分表,而不论用post_id还是user_id来hash分表都与我们的需求有冲突,唯一的办法就是做两个表冗余。这增加了存储空间和维护工作量,还可能有一致性问题。
2.2 redis方案
当数据量达到上亿的量,上cache是必经的阶段,由于点赞这种动作很随意,很多人看到大拇指就想点,所以数据量增长很快,数据规模上来后,对mysql读写都有很大的压力,这时就要考虑memcache、redis进行存储或cache。
为什么一般都选择redis, redis作为流行的nosql,有着丰富的数据类型,可以适应多个场景的需求。
采用redis有两种用途,一种是storage,一种是纯cache,需要+mysql一起。纯cache就是把数据从mysql先写入redis,用户先读cache,miss后再拉取MySQL,同时cache做同步。
多数场景二者是同时使用的,并不冲突。
下面说下redis作为storage的方案:
场景a :显示点赞数量
在点赞的地方,只是显示一个点赞数量,能区分用户是否点赞过,一般用户不关心这个列表,这个场景只要一个数字就可以了,当数量比较大时,一般显示为"7k" ,"10W" 这样。
以文章id为key
//以文章id=888为例 127.0.0.1:6379[2]> set star:tid:888 898 //设置点赞数量 OK 127.0.0.1:6379[2]> incr star:tid:888 //实现数量自增 (integer) 899
场景b:点赞去重,避免重复点赞
要实现这个需求,必须有文章点赞的uid列表,以uid为key场景c:一般在用户中心,可以看到用户自己的点赞列表
这个需求可以使用场景b的数据来实现。
场景d:文章的点赞列表,类似场景b,以文章id为key
//以文章id=888为例 127.0.0.1:6379[2]> sadd star:list:tid:888 123 456 789 //点赞uid列表 (integer) 3 127.0.0.1:6379[2]> sismember star:list:tid:888 456 //判断是否点赞 (integer) 1
点赞的地方,如果点赞过显示红色,没有则显示黑白色,
今日头条是没有地方可以看到点赞列表的,而微博点进去,详情页可以看到点赞列表,但是只会显示最近的几十条,没有分页显示。
如下图,我选了一条热点,拥有众多粉丝的“猪猪”
可能有人觉得,点赞列表没人关心,存储又会浪费大量资源,不如不存!但是,这个数据是必须要有的。两点:
a. 去重。点赞数可以不精确,但去重必须是精确的,
b.另外一个社交产品,用户行为的一点一滴都需要记录,对于后续的用户行为分析和数据挖掘都是有意义的。
上面使用string存储的用户点赞数量,除了string,还可以用hash来存储,对文章id分块,每100个存到一个hash,分别存入hash table,每个文章id为hash的一个key,value存储点赞的用户id,如果点赞用户很多,避免id过多产生性能问题,可以单列出来,用sorted set结构保存,热点的毕竟是少数。
方案优缺点比对
hash:使用了更少的全局key ,节省了内存空间;但是也带来了问题
如何根据文章id路由到对应的hash?
查找一个用户id是在hash还是set?存在不确定性
使用hash虽然节省了空间,但增加了复杂度,如何选择就看个人需求了。
除此之外,你还有其他的方法吗?
3. 数据一致性
redis作为storage使用时,一定要做好数据的持久化,必须开启 rdb 和 aof,这会导致业务只能使用一半的机器内存,所以要做好容量的监控,及时扩容。
另外只要有数据copy,就会有一致性问题,这就是另外一个很重要的话题了。以后有时间再细聊吧!
写在最后:把问题写明白,真不是一件容易的事情,请大家多多关注,留言,谢谢!
前几天写的一篇文章,受到众多同行的热情回复,能和众多同行一起交流,深感荣幸!对于工程类问题,没有标准的方案,一千个人有一千个方案,哪个最适合你只有你自己知道!期待你更好的思路和方法。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。