MySQL DBA面试常见问题总结:索引,事务,存储引擎,优化等

网友投稿 717 2023-05-11

MySQL DBA面试常见问题总结:索引,事务,存储引擎,优化等

MySQL DBA面试常见问题总结:索引,事务,存储引擎,优化等

这篇文章主要是针对开发人员的,所以不涉及到MySQL的服务部署等操作,主要包括索引,事务,存储引擎,优化等方面。

一、索引

关于MySQL的索引,之前实际上也介绍了很多次,这里主要介绍一些常用的面试题。

1. 什么是索引?索引是个什么样的数据结构呢?

索引是一种数据结构,可以帮助我们快速的进行数据的查找。

索引的数据结构和具体存储引擎的实现有关, 在MySQL中使用较多的索引有Hash索引,B+树索引等,而我们经常使用的InnoDB存储引擎的默认索引实现为:B+树索引。

2. Hash索引和B+树所有有什么区别或者说优劣呢?

首先要知道Hash索引和B+树索引的底层实现原理:

hash索引底层就是hash表,进行查找时,调用一次hash函数就可以获取到相应的键值,之后进行回表查询获得实际数据.B+树底层实现是多路平衡查找树.对于每一次的查询都是从根节点出发,查找到叶子节点方可以获得所查键值,然后根据查询判断是否需要回表查询数据。

那么可以看出他们有以下的不同:

hash索引进行等值查询更快(一般情况下),但是却无法进行范围查询,因为在hash索引中经过hash函数建立索引之后,索引的顺序与原顺序无法保持一致,不能支持范围查询.而B+树的的所有节点皆遵循(左节点小于父节点,右节点大于父节点,多叉树也类似),天然支持范围.hash索引不支持使用索引进行排序,原理同上.hash索引不支持模糊查询以及多列索引的最左前缀匹配.原理也是因为hash函数的不可预测.AAAA和AAAAB的索引没有相关性.hash索引任何时候都避免不了回表查询数据,而B+树在符合某些条件(聚簇索引,覆盖索引等)的时候可以只通过索引完成查询.hash索引虽然在等值查询上较快,但是不稳定.性能不可预测,当某个键值存在大量重复的时候,发生hash碰撞,此时效率可能极差.而B+树的查询效率比较稳定,对于所有的查询都是从根节点到叶子节点,且树的高度较低.

因此,在大多数情况下,直接选择B+树索引可以获得稳定且较好的查询速度.而不需要使用hash索引.

3. B+树在满足聚簇索引和覆盖索引的时候不需要回表查询数据,那么什么是聚簇索引?

在B+树的索引中,叶子节点可能存储了当前的key值,也可能存储了当前的key值以及整行的数据,这就是聚簇索引和非聚簇索引. 在InnoDB中,只有主键索引是聚簇索引,如果没有主键,则挑选一个唯一键建立聚簇索引.如果没有唯一键,则隐式的生成一个键来建立聚簇索引.

当查询使用聚簇索引时,在对应的叶子节点,可以获取到整行数据,因此不用再次进行回表查询.

4. 非聚簇索引一定会回表查询吗?

不一定,这涉及到查询语句所要求的字段是否全部命中了索引,如果全部命中了索引,那么就不必再进行回表查询.

举个简单的例子,假设在员工表的年龄上建立了索引,那么当进行select age from employee where age < 20的查询时,在索引的叶子节点上,已经包含了age信息,不会再次进行回表查询.

5. 在建立索引的时候,都有哪些需要考虑的因素呢?

建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合.如果需要建立联合索引的话,还需要考虑联合索引中的顺序.此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力.这些都和实际的表结构以及查询方式有关.

6. 联合索引是什么?为什么需要注意联合索引中的顺序?

MySQL可以使用多个字段同时建立一个索引,叫做联合索引.在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引.

具体原因为:

MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序.

当进行查询时,此时索引仅仅按照name严格有序,因此必须首先使用name字段进行等值查询,之后对于匹配到的列而言,其按照age字段严格有序,此时可以使用age字段用做索引查找,,,以此类推.因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面.此外可以根据特例的查询或者表结构进行单独的调整.

7. 简单描述mysql中,索引,主键,唯一索引,联合索引的区别,对数据库的性能有什么影响(从读写两方面)

索引是一种特殊的文件(InnoDB数据表上的索引是表空间的一个组成部分),它们包含着对数据表里所有记录的引用指针。

普通索引(由关键字KEY或INDEX定义的索引)的唯一任务是加快对数据的访问速度。

普通索引允许被索引的数据列包含重复的值。如果能确定某个数据列将只包含彼此各不相同的值,在为这个数据列创建索引的时候就应该用关键字UNIQUE把它定义为一个唯一索引。也就是说,唯一索引可以保证数据记录的唯一性。

主键,是一种特殊的唯一索引,在一张表中只能定义一个主键索引,主键用于唯一标识一条记录,使用关键字 PRIMARY KEY 来创建。

索引可以覆盖多个数据列,如像INDEX(columnA, columnB)索引,这就是联合索引。

索引可以极大的提高数据的查询速度,但是会降低插入、删除、更新表的速度,因为在执行这些写操作时,还要操作索引文件。

二、事务

1. ACID是什么?

A=Atomicity:原子性,就是上面说的,要么全部成功,要么全部失败.不可能只执行一部分操作.C=Consistency:系统(数据库)总是从一个一致性的状态转移到另一个一致性的状态,不会存在中间状态.I=Isolation:隔离性: 通常来说:一个事务在完全提交之前,对其他事务是不可见的.注意前面的通常来说加了红色,意味着有例外情况.D=Durability:持久性,一旦事务提交,那么就永远是这样子了,哪怕系统崩溃也不会影响到这个事务的结果.

2. 同时有多个事务在进行会怎么样呢?

多事务的并发进行一般会造成以下几个问题:

脏读:A事务读取到了B事务未提交的内容,而B事务后面进行了回滚.不可重复读::当设置A事务只能读取B事务已经提交的部分,会造成在A事务内的两次查询,结果竟然不一样,因为在此期间B事务进行了提交操作.幻读::A事务读取了一个范围的内容,而同时B事务在此期间插入了一条数据.造成"幻觉".

3. 怎么解决这些问题呢?MySQL的事务隔离级别了解吗?

MySQL的四种隔离级别如下:

(1) 未提交读(READ UNCOMMITTED)

这就是上面所说的例外情况了,这个隔离级别下,其他事务可以看到本事务没有提交的部分修改.因此会造成脏读的问题(读取到了其他事务未提交的部分,而之后该事务进行了回滚).

这个级别的性能没有足够大的优势,但是又有很多的问题,因此很少使用.

(2) 已提交读(READ COMMITTED)

其他事务只能读取到本事务已经提交的部分.这个隔离级别有 不可重复读的问题,在同一个事务内的两次读取,拿到的结果竟然不一样,因为另外一个事务对数据进行了修改.

(3) REPEATABLE READ(可重复读)

可重复读隔离级别解决了上面不可重复读的问题(看名字也知道),但是仍然有一个新问题,就是 幻读,当你读取id> 10 的数据行时,对涉及到的所有行加上了读锁,此时例外一个事务新插入了一条id=11的数据,因为是新插入的,所以不会触发上面的锁的排斥,那么进行本事务进行下一次的查询时会发现有一条id=11的数据,而上次的查询操作并没有获取到,再进行插入就会有主键冲突的问题.

(4) SERIALIZABLE(可串行化)

这是最高的隔离级别,可以解决上面提到的所有问题,因为他强制将所以的操作串行执行,这会导致并发性能极速下降,因此也不是很常用.

4. Innodb默认使用的是哪种隔离级别呢?

InnoDB默认使用的是可重复读隔离级别.

5. MySQL都有哪些锁呢?像上面那样子进行锁定岂不是有点阻碍并发效率了?

从锁的类别上来讲,有共享锁和排他锁。

共享锁:又叫做读锁. 当用户要进行数据的读取时,对数据加上共享锁.共享锁可以同时加上多个.排他锁:又叫做写锁. 当用户要进行数据的写入时,对数据加上排他锁.排他锁只可以加一个,他和其他的排他锁,共享锁都相斥.

MyISAM支持表锁,InnoDB支持表锁和行锁,默认为行锁

表级锁:开销小,加锁快,不会出现死锁。锁定粒度大,发生锁冲突的概率最高,并发量最低行级锁:开销大,加锁慢,会出现死锁。锁力度小,发生锁冲突的概率小,并发度最高

6. 锁的优化策略

读写分离分段加锁减少锁持有的时间多个线程尽量以相同的顺序去获取资源

不能将锁的粒度过于细化,不然可能会出现线程的加锁和释放次数过多,反而效率不如一次加一把大锁。

三、存储引擎

1. MySQL支持哪些存储引擎?

MySQL支持多种存储引擎,比如InnoDB,MyISAM,Memory,Archive等等.在大多数的情况下,直接选择使用InnoDB引擎都是最合适的,InnoDB也是MySQL的默认存储引擎.

2. InnoDB和MyISAM有什么区别?

InnoDB支持事务,而MyISAM不支持事务InnoDB支持行级锁,而MyISAM支持表级锁InnoDB支持MVCC, 而MyISAM不支持InnoDB支持外键,而MyISAM不支持InnoDB不支持全文索引,而MyISAM支持。

四、优化

1. 超大分页怎么处理?

超大的分页一般从两个方向上来解决.

数据库层面,这也是我们主要集中关注的(虽然收效没那么大),类似于select * from table where age > 20 limit 1000000,10这种查询其实也是有可以优化的余地的. 这条语句需要load1000000数据然后基本上全部丢弃,只取10条当然比较慢. 当时我们可以修改为select * from table where id in (select id from table where age > 20 limit 1000000,10).这样虽然也load了一百万的数据,但是由于索引覆盖,要查询的所有字段都在索引中,所以速度会很快. 同时如果ID连续的好,我们还可以select * from table where id > 1000000 limit 10,效率也是不错的,优化的可能性有许多种,但是核心思想都一样,就是减少load的数据.从需求的角度减少这种请求….主要是不做类似的需求(直接跳转到几百万页之后的具体某一页.只允许逐页查看或者按照给定的路线走,这样可预测,可缓存)以及防止ID泄漏且连续被人恶意攻击.

解决超大分页,其实主要是靠缓存,可预测性的提前查到内容,缓存至redis等k-V数据库中,直接返回即可.

2. 有关注生产环境sql耗时吗?统计过慢查询吗?对慢查询都怎么优化过?

在业务系统中,除了使用主键进行的查询,其他的都会在测试库上测试其耗时,慢查询的统计主要由运维在做,会定期将业务中的慢查询反馈给我们.慢查询的优化首先要搞明白慢的原因是什么? 是查询条件没有命中索引?是load了不需要的数据列?还是数据量太大?

所以优化也是针对这三个方向来的,

首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写.分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引.如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表.

3. MySQL数据库作发布系统的存储,数据量增大的情况,怎么优化?

设计良好的数据库结构,允许部分数据冗余,尽量避免join查询,提高效率。选择合适的表字段数据类型和存储引擎,适当的添加索引。mysql库主从读写分离。找规律分表,减少单表中的数据量提高查询速度。添加缓存机制,比如memcached,apc等。不经常改动的页面,生成静态页面。书写高效率的SQL。比如 SELECT * FROM TABEL 改为 SELECT field_1, field_2, field_3 FROM TABLE.

4. 实践中如何优化MySQL

最好是按照以下顺序优化:

SQL语句及索引的优化数据库表结构的优化系统配置的优化硬件的优化

五、其他

1. MySQL中的varchar和char有什么区别.

char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容.该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间.

在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar.例如存储用户MD5加密后的密码,则应该使用char.

2. varchar(10)和int(10)代表什么含义?

varchar的10代表了申请的空间长度,也是可以存储的数据的最大长度,而int的10只是代表了展示的长度,不足10位以0填充.也就是说,int(1)和int(10)所能存储的数字大小以及占用的空间都是相同的,只是在展示时按照长度展示.

3. MySQL的binlog有有几种录入格式?分别有什么区别?

有三种格式,statement,row和mixed.

statement模式下,记录单元为语句.即每一个sql造成的影响会记录.由于sql的执行是有上下文的,因此在保存的时候需要保存相关的信息,同时还有一些使用了函数之类的语句无法被记录复制.row级别下,记录单元为每一行的改动,基本是可以全部记下来但是由于很多操作,会导致大量行的改动(比如alter table),因此这种模式的文件保存的信息太多,日志量太大.mixed. 一种折中的方案,普通操作使用statement记录,当无法使用statement的时候使用row.

此外,新版的MySQL中对row级别也做了一些优化,当表结构发生变化的时候,会记录语句而不是逐行记录.

4. 有了解横向分表和纵向分表吗?

横向分表是按行分表.假设我们有一张用户表,主键是自增ID且同时是用户的ID.数据量较大,有1亿多条,那么此时放在一张表里的查询效果就不太理想.我们可以根据主键ID进行分表,无论是按尾号分,或者按ID的区间分都是可以的. 假设按照尾号0-99分为100个表,那么每张表中的数据就仅有100w.这时的查询效率无疑是可以满足要求的.

当然,分表其实和业务的关联度很高,在分表之前一定要做好调研以及benchmark.不要按照自己的猜想盲目操作.

5. 三个范式

第一范式:每个列都不可以再拆分.第二范式:非主键列完全依赖于主键,而不能是依赖于主键的一部分.第三范式:非主键列只依赖于主键,不依赖于其他非主键.

在设计数据库结构的时候,要尽量遵守三范式,如果不遵守,必须有足够的理由.比如性能. 事实上我们经常会为了性能而妥协数据库的设计。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:记一次生产环境卡顿优化过程:大事务并发回滚
下一篇:一文告诉你全世界头部的开发者都在使用什么数据库
相关文章