麒麟v10 上部署 TiDB v5.1.2 生产环境优化实践
2553
2023-05-10
Redis内存淘汰策略,看这一篇就够了!
Redis作为当前最常用的开源内存数据库,性能十分高,据官方数据表示Redis读的速度是110000次/s,写的速度是81000次/s 。而且Redis支持数据持久化,众多数据结构存储,master-slave模式数据备份等多种功能。
但是长期将Redis作为缓存使用,难免会遇到内存空间存储瓶颈,当Redis内存超出物理内存限制时,内存数据就会与磁盘产生频繁交换,使Redis性能急剧下降。此时如何淘汰无用数据释放空间,存储新数据就变得尤为重要了。
对此,Redis在生产环境中,采用配置参数maxmemory 的方式来限制内存大小。当实际存储内存超出maxmemory 参数值时,开发者们可以通过这几种方法——Redis内存淘汰策略,来决定如何腾出新空间继续支持读写工作。
那么Redis内存淘汰策略是如何工作的呢?
首先,客户端会发起需要更多内存的申请;
其次,Redis检查内存使用情况,如果实际使用内存已经超出maxmemory,Redis就会根据用户配置的淘汰策略选出无用的key;
***,确认选中数据没有问题,成功执行淘汰任务。
当前Redis3.0版本支持的淘汰策略有6种:
1. volatile-lru:从设置过期时间的数据集(server.db[i].expires)中挑选出最近最少使用的数据淘汰。没有设置过期时间的key不会被淘汰,这样就可以在增加内存空间的同时保证需要持久化的数据不会丢失。
2. volatile-ttl:除了淘汰机制采用LRU,策略基本上与volatile-lru相似,从设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰,ttl值越大越优先被淘汰。
3. volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰。当内存达到限制无法写入非过期时间的数据集时,可以通过该淘汰策略在主键空间中随机移除某个key。
4. allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰,该策略要淘汰的key面向的是全体key集合,而非过期的key集合。
5. allkeys-random:从数据集(server.db[i].dict)中选择任意数据淘汰。
6. no-enviction:禁止驱逐数据,也就是当内存不足以容纳新入数据时,新写入操作就会报错,请求可以继续进行,线上任务也不能持续进行,采用no-enviction策略可以保证数据不被丢失,这也是系统默认的一种淘汰策略。
上述是Redis的6种淘汰策略,关于使用这6种策略,开发者还需要根据自身系统特征,正确选择或修改驱逐。
在Redis中,数据有一部分访问频率较高,其余部分访问频率较低,或者无法预测数据的使用频率时,设置allkeys-lru是比较合适的。如果所有数据访问概率大致相等时,可以选择allkeys-random。如果研发者需要通过设置不同的ttl来判断数据过期的先后顺序,此时可以选择volatile-ttl策略。如果希望一些数据能长期被保存,而一些数据可以被淘汰掉时,选择volatile-lru或volatile-random都是比较不错的。由于设置expire会消耗额外的内存,如果计划避免Redis内存在此项上的浪费,可以选用allkeys-lru 策略,这样就可以不再设置过期时间,高效利用内存了。
区分不同的淘汰策略选择不同的key,Redis淘汰策略主要分为LRU淘汰、TTL淘汰、随机淘汰三种机制。
LRU淘汰
LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。
在服务器配置中保存了 lru 计数器 server.lrulock,会定时(redis 定时程序 serverCorn())更新,server.lrulock 的值是根据 server.unixtime 计算出来进行排序的,然后选择最近使用时间最久的数据进行删除。另外,从 struct redisObject 中可以发现,每一个 redis 对象都会设置相应的 lru。每一次访问数据,会更新对应redisObject.lru。
在Redis中,LRU算法是一个近似算法,默认情况下,Redis会随机挑选5个键,并从中选择一个最久未使用的key进行淘汰。在配置文件中,按maxmemory-samples选项进行配置,选项配置越大,消耗时间就越长,但结构也就越精准。
TTL淘汰
Redis 数据集数据结构中保存了键值对过期时间的表,即 redisDb.expires。与 LRU 数据淘汰机制类似,TTL 数据淘汰机制中会先从过期时间的表中随机挑选几个键值对,取出其中 ttl ***的键值对淘汰。同样,TTL淘汰策略并不是面向所有过期时间的表中最快过期的键值对,而只是随机挑选的几个键值对。
随机淘汰
在随机淘汰的场景下获取待删除的键值对,随机找hash桶再次hash指定位置的dictEntry即可。
Redis中的淘汰机制都是几近于算法实现的,主要从性能和可靠性上做平衡,所以并不是完全可靠,所以开发者们在充分了解Redis淘汰策略之后还应在平时多主动设置或更新key的expire时间,主动删除没有价值的数据,提升Redis整体性能和空间。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。