数据库读写分离架构,为什么我不喜欢

网友投稿 964 2023-05-05

数据库读写分离架构,为什么我不喜欢

数据库读写分离架构,为什么我不喜欢

RD:单库数据量太大,数据库扛不住了,我要申请一个数据库从库,读写分离。

DBA:数据量多少?

RD:5000w左右。

DBA:读写吞吐量呢?

RD:读QPS约200,写QPS约30左右。

上周在公司听到两个技术同学讨论,感觉对读写分离解决什么问题没有弄清楚,有些奔溃。

另,对于互联网某些业务场景,并不是很喜欢数据库读写分离架构,一些浅见见文末。

一、读写分离

什么是数据库读写分离?

答:一主多从,读写分离,主动同步,是一种常见的数据库架构,一般来说:

主库,提供数据库写服务从库,提供数据库读服务主从之间,通过某种机制同步数据,例如mysql的binlog

一个组从同步集群通常称为一个“分组”。

分组架构究竟解决什么问题?

答:大部分互联网业务读多写少,数据库的读往往***成为性能瓶颈,如果希望:

线性提升数据库读性能通过消除读写锁冲突提升数据库写性能

此时可以使用分组架构。

一句话,分组主要解决“数据库读性能瓶颈”问题,在数据库扛不住读的时候,通常读写分离,通过增加从库线性提升系统读性能。

二、水平切分

什么是数据库水平切分?

答:水平切分,也是一种常见的数据库架构,一般来说:

每个数据库之间没有数据重合,没有类似binlog同步的关联所有数据并集,组成全部数据会用算法,来完成数据分割,例如“取模”

一个水平切分集群中的每一个数据库,通常称为一个“分片”。

水平切分架构究竟解决什么问题?

答:大部分互联网业务数据量很大,单库容量容易成为瓶颈,如果希望:

线性降低单库数据容量线性提升数据库写性能

此时可以使用水平切分架构。

一句话总结,水平切分主要解决“数据库数据量大”问题,在数据库容量扛不住的时候,通常水平切分。

三、为什么不喜欢读写分离

对于互联网大数据量,高并发量,高可用要求高,一致性要求高,前端面向用户的业务场景,如果数据库读写分离:

数据库连接池需要区分:读连接池,写连接池如果要保证读高可用,读连接池要实现故障自动转移有潜在的主库从库一致性问题

如果面临的是“读性能瓶颈”问题,增加缓存可能来得更直接,更容易一点关于成本,从库的成本比缓存高不少对于云上的架构,以***为例,主库提供高可用服务,从库不提供高可用服务

所以,上述业务场景下,楼主建议使用缓存架构来加强系统读性能,替代数据库主从分离架构。

当然,使用缓存架构的潜在问题:如果缓存挂了,流量全部压到数据库上,数据库会雪崩。不过幸好,云上的缓存一般都提供高可用的服务。

四、总结

读写分离,解决“数据库读性能瓶颈”问题水平切分,解决“数据库数据量大”问题对于互联网大数据量,高并发量,高可用要求高,一致性要求高,前端面向用户的业务场景,微服务缓存架构,可能比数据库读写分离架构更合适

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Oracle性能优化之SQL优化【上】
下一篇:Java Web实战篇-轻松提高千万级数据库查询效率
相关文章