机器学习中的数学(2)-线性回归,偏差、方差权衡

网友投稿 789 2023-04-26

机器学习中的数学(2)-线性回归,偏差、方差权衡

机器学习中的数学(2)-线性回归,偏差、方差权衡

线性回归定义:

在上一个主题中,也是一个与回归相关的,不过上一节更侧重于梯度这个概念,这一节更侧重于回归本身与偏差和方差的概念。

回归最简单的定义是,给出一个点集D,用一个函数去拟合这个点集,并且使得点集与拟合函数间的误差最小。

第二张图是二次曲线,对应的函数是y = f(x) = ax^2 + b。

第三张图我也不知道是什么函数,瞎画的。

第四张图可以认为是一个N次曲线,N = M - 1,M是点集中点的个数,有一个定理是,对于给定的M个点,我们可以用一个M - 1次的函数去***的经过这个点集。

真正的线性回归,不仅会考虑使得曲线与给定点集的拟合程度***,还会考虑模型最简单,这个话题我们将在本章后面的偏差、方差的权衡中深入的说,另外这个话题还可以参考我之前的一篇文章:贝叶斯、概率分布与机器学习,里面对模型复杂度的问题也进行了一些讨论。

线性回归(linear regression),并非是指的线性函数,也就是

x0,x1…表示一个点不同的维度,比如说上一节中提到的,房子的价钱是由包括面积、房间的个数、房屋的朝向等等因素去决定的。而是用广义的线性函数:

最小二乘法与***似然:

概率分布是一个可爱又可恨的东西,当我们能够准确的预知某些数据的分布时,那我们可以做出一个非常精确的模型去预测它,但是在大多数真实的应用场景中,数据的分布是不可知的,我们也很难去用一个分布、甚至多个分布的混合去表示数据的真实分布,比如说给定了1亿篇网页,希望用一个现有的分布(比如说混合高斯分布)去匹配里面词频的分布,是不可能的。在这种情况下,我们只能得到词的出现概率,比如p(的)的概率是0.5,也就是一个网页有1/2的概率出现“的”。如果一个算法,是对里面的分布进行了某些假设,那么可能这个算法在真实的应用中就会表现欠佳。最小二乘法对于类似的一个复杂问题,就很无力了

偏差、方差的权衡(trade-off):

偏差(bias)和方差(variance)是统计学的概念,刚进公司的时候,看到每个人的嘴里随时蹦出这两个词,觉得很可怕。首先得明确的,方差是多个模型间的比较,而非对一个模型而言的,对于单独的一个模型,比如说:

这样的一个给定了具体系数的估计函数,是不能说f(x)的方差是多少。而偏差可以是单个数据集中的,也可以是多个数据集中的,这个得看具体的定义。

方差和偏差一般来说,是从同一个数据集中,用科学的采样方法得到几个不同的子数据集,用这些子数据集得到的模型,就可以谈他们的方差和偏差的情况了。方差和偏差的变化一般是和模型的复杂程度成正比的,就像本文一开始那四张小图片一样,当我们一味的追求模型精确匹配,则可能会导致同一组数据训练出不同的模型,它们之间的差异非常大。这就叫做方差,不过他们的偏差就很小了,如下图所示:

用一个很通俗的例子来说,现在咱们国家一味的追求GDP,GDP就像是模型的偏差,国家希望现有的GDP和目标的GDP差异尽量的小,但是其中使用了很多复杂的手段,比如说倒卖土地、强拆等等,这个增加了模型的复杂度,也会使得偏差(居民的收入分配)变大,穷的人越穷(被赶出城市的人与进入城市买不起房的人),富的人越富(倒卖土地的人与卖房子的人)。其实本来模型不需要这么复杂,能够让居民的收入分配与国家的发展取得一个平衡的模型是***的模型。

***还是用数学的语言来描述一下偏差和方差:

对于上面公式的***部分,我们可以化成下面的形式:

下图也来自PRML:

这是一个曲线拟合的问题,对同分布的不同的数据集进行了多次的曲线拟合,左边表示方差,右边表示偏差,绿色是真实值函数。ln lambda表示模型的复杂程度,这个值越小,表示模型的复杂程度越高,在***行,大家的复杂度都很低(每个人都很穷)的时候,方差是很小的,但是偏差同样很小(国家也很穷),但是到了***一幅图,我们可以得到,每个人的复杂程度都很高的情况下,不同的函数就有着天壤之别了(贫富差异大),但是偏差就很小了(国家很富有)。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:众说纷纭 机器学习究竟是什么?
下一篇:自动分析工具:数据科学家职业的终结者?
相关文章