文盘 Rust 连接云上数仓 Starwift 技巧
667
2023-04-26
大数据如何在企业落地
数据基础平台层,金字塔的最底层也是整个金字塔的基础层,如果基础层搭建不好,上面的应用层也很难在企业运营中发挥效果。没有数据或者没有高质量的数据,所有的分析都是误导,所有的数据挖掘都是错误的引导。
这一层的目标是把企业的所有用户(客户)数据用唯一的ID串起来,包括用户(客户)的画像(如性别、年龄等)、行为以及兴趣爱好等,以达到全面的了解用户(客户)的目的。要做好有三个关键:1.企业需要确定打通数据的唯一ID,有的企业是用会员注册号,有的是手机号或者身份证号等等。2.跨部门整合数据的问题。有大数据的企业通常部门都比较多,用户(客户)的各种行为和兴趣爱好数据散落在不同部门,需要企业有意识强有力的去整合;3.通过技术手段和规范手段把数据管理起来,这里解决的问题是存在数据仓库里面的数据具体的含义是什么,以及如何高效的存储和计算,涉及到数据接入系统、元数据管理系统和计算任务调度等系统。
业务运营监控层。这一层首要的是搭建业务运营的关键数据体系,在此基础上通过智能化模型开发出来的数据产品,监控关键数据的异动,并可以快速定位数据异动的原因,辅助运营决策,如果企业构建了实时计算的能力,那么很多业务运营中问题就能过及时的发现。
用户/客户体验优化层。这一层面主要是通过数据来监控和优化用户/客户的体验问题。这里面既运用了结构化的数据来监控,也运用非结构化的数据(如文本)来监控体验的问题。前者更多的是应用各种用户(客户)体验监测的模型或者工具来实现,后者更多的是通过监测微博、论坛和企业内部的客户反馈系统的文本来发现负面的口碑,以及时的优化产品或服务。
业务运营监控层和用户/客户体验优化层最终希望实现企业运营的智能化医生。这两层面做出的工具好比是体温计、血压计、B超、CT等工具,我们用这些工具就能快速透视企业运营中那一模块产生问题。
数据辅助市场传播。这一层面要做到通过“性感”的数据分析和挖掘来辅助产品进行传播,主要有两种实现方式:一种是好玩的数据信息图谱,相信大家都不喜欢看产品的公关软文,而更喜欢看好玩的内容。尤其是在网络上传播,10-29岁的网民占所有中国网民的一半多(55%,CNNIC 2013年数据),而这些用户偏年轻、偏“屌丝”,所以这些受众更喜欢“性感”的内容。
淘宝曾经通过统计其购买胸罩C-Cup以上的用户地区分布,发现西安的网民相对比例最多,并发布了这个数据,说西安女生胸部最大,引起不少“屌丝”网民传播。而***在今年3月份则基于8亿多活跃用户首次披露“逃离北上广”数据图,发现11%的用户在春节后逃离了北上广。
数据辅助市场传播的另外一种方式是直接做成数据产品对外使用。比如,百度指数或百度过年期间做的迁徙地图。百度东莞8小时迁徙图的数据中可以看到,离开东莞后,去香港的人最多。那我们是不是可以简单地得到一个信息,从香港去东莞的人最多……
业务经营分析和战略分析层。这两个层面在这里就不多说了,因为这两个层面更多的是跟很多传统的战略分析、经营分析层面的方法论相似,最大的差异是数据来自于大数据。但这里面有两方面需要注意:
1.有很多企业错误的把“业务运营监控层”和“用户/客户体验优化层”做的事情放在经营分析或者战略分析层来做。我认为“业务运营监控层”和“用户/客户体验优化层”更多的是通过机器、算法和数据产品来实现的,“战略分析”、“经营分析”更多的是人来实现。很多企业把机器能做的事情交给了人来做,这样导致发现问题的效率较低。我的建议是,能用机器做的事情尽量用机器来做好“业务运营监控层”和“用户/客户体验优化层”,在此基础上让人来做人类更擅长的经验分析和战略判断;
2. 在变化极快的互联网领域,在业务的战略方向选择上,数据很难预测业务的大发展方向,如果有人说微信这个大方向是通过数据挖掘和分析研究出来,估计产品经理们会笑了。从本质上来说,数据在精细化营销和运营中能起到比较好的作用,但在产品策划、广告创意等创意性的事情上,起到的作用较小。但一旦产品创意出来,就可以通过灰度测试,数据验证效果了。
我认为,如果能利用数据通过机器、算法、或者人工的手段,把现状和问题及原因洞悉的特别清楚已经很不错了,这样决策层就可以基于这些情况进行更好的“拍脑袋”决策了。
总之,本文只是提纲挈领的介绍了大数据在企业的落地方案。还有更多的细节和方法论未能展示出来。另外,大数据在不同行业的落地也许有较大的差异。因此,欢迎各行业同仁与我交流探讨。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。