黄东旭解析 TiDB 的核心优势
624
2024-01-25
dbt (data build tool)是一款流行的开源数据转换工具,能够通过 SQL 实现数据转化,将命令转化为表或者视图,提升数据分析师的工作效率TiDB 社区在近日推出了 dbt-tidb 插件,实现了 TiDB 和 。
dbt 的兼容适配本文将通过一个简单的案例介绍如何通过 dbt 实现 TiDB 中数据的简单分析dbt 主要功能在于转换数据库或数据仓库中的数据,在 E(Extract)、L(Load)、T(Transform) 的流程中,仅负责转换(transform)的过程。
通过 dbt-tidb 插件,数据分析师在使用 TiDB 的过程中,能够通过 SQL 直接建立表单并匹配数据,而无需关注创建 table 或 view 的过程,并且可以直观地看到数据的流动;同时能够运用 dbt 的 Jinja 编写 SQL、测试、包管理等功能,大大提升工作效率。
(图片来源:https://blog.getdbt.com/what-exactly-is-dbt/)接下来,我将以 dbt 官方教程为例,给大家介绍下 TiDB 与 dbt 的结合使用本例用到的相关软件及其版本要求:。
TiDB 5.3 或更高版本dbt 1.0.1 或更高版本dbt-tidb 1.0.0安装dbt 除了本地 CLI 工具外,还支持 dbt Cloud (目前,dbt Cloud 只支持 dbt-lab 官方维护的 adapter),其中本地 CLI 工具有多种安装方式。
我们这里直接使用 pypi 安装 dbt 和 dbt-tidb 插件安装 dbt 和 dbt-tidb,只需要一条命令,因为 dbt 会作为依赖在安装 dbt-tidb 的时候顺便安装 $ pip install
dbt-tidbCopydbt 也可自行安装,安装方式参考官方安装教程创建项目:jaffle_shopjaffle_shop 是 dbt-lab 提供的用于演示 dbt 功能的工程项目,你可以直接从 GitHub 上获取它。
$ git clone https://github.com/dbt-labs/jaffle_shop $ cd jaffle_shopCopy这里展开 jaffle_shop 工程目录下所有文件dbt_project.yml。
是 dbt 项目的配置文件,其中保存着项目名称、数据库配置文件的路径信息等models 目录下存放该项目的 SQL 模型和 table 约束,注意这部分是数据分析师自行编写的seed 目录存放 CSV 文件。
此类文件可以来源于数据库导出工具,例如TiDB 可以通过 Dumpling 把 table 中的数据导出为 CSV 文件jaffle_shop 工程中,这些 CSV 文件用来作为待处理的原始数据关于它们更加具体的内容,在用到上面的某个文件或目录后,我会再次进行更详细的说明。
ubuntu@ubuntu:~/jaffle_shop$ tree . ├── dbt_project.yml ├── etc │ ├── dbdiagram_definition.txt │ └── jaffle_shop_erd.png ├── LICENSE ├── models │ ├── customers.sql │ ├── docs.md │ ├── orders.sql │ ├── overview.md │ ├── schema.yml │ └── staging │ ├── schema.yml │ ├── stg_customers.sql │ ├── stg_orders.sql │ └── stg_payments.sql ├── README.md └── seeds ├── raw_customers.csv ├── raw_orders.csv └── raw_payments.csv
Copy配置项目1.全局配置dbt 有一个默认的全局配置文件:~/.dbt/profiles.yml,我们首先在用户目录下建立该文件,并配置 TiDB 数据库的连接信息 $ vi ~/.dbt/profiles.yml jaffle_shop_tidb: 。
# 工程名称 target: dev # 目标 outputs: dev: type: tidb # 适配器类型 server: 127.0.0.1 # 地址 port: 4000# 端口号 schema: analytics
# 数据库名称 username: root # 用户名 password: ""# 密码Copy2.项目配置jaffle_shop 工程目录下,有此项目的配置文件,名为dbt_project.yml把。
profile配置项改为jaffle_shop_tidb,即profiles.yml文件中的工程名称这样此工程在会到 ~/.dbt/profiles.yml文件中查询数据库连接配置$ cat dbt_project.yml name: 。
jaffle_shop config-version: 2 version: 0.1 profile: jaffle_shop_tidb# 注意此处修改 model-paths: ["models"]# model 路径
seed-paths: ["seeds"]# seed 路径 test-paths: ["tests"] analysis-paths: ["analysis"] macro-paths: ["macros"
] target-path: "target" clean-targets: - "target" - "dbt_modules" - "logs" require-dbt-version: [">=1.0.0"
, "<2.0.0"] models: jaffle_shop: materialized: table # models/ 中的 *.sql 物化为表 staging: materialized: view
# models/staging/ 中的 *.sql 物化为视图Copy3.验证配置可以通过以下命令,检测数据库和项目配置是否正确$ dbt debug 06:59:18 Running with dbt。
=1.0.1 dbt version: 1.0.1 python version: 3.8.10 python path: /usr/bin/python3 os info: Linux-5.4.0-97
-generic-x86_64-with-glibc2.29Using profiles.yml file at /home/ubuntu/.dbt/profiles.yml Using dbt_project
.yml file at /home/ubuntu/jaffle_shop/dbt_project.yml Configuration: profiles.yml file[OK found and valid
] dbt_project.yml file[OK found and valid] Configuration: profiles.yml file[OK found and valid] dbt_project
.yml file[OK found and valid] Required dependencies: - git [OK found] Connection: server: 127.0.0.1 port:
4000database: None schema: analytics user: root Connection test: [OK connection ok]All checks passed!
Copy加载 CSV加载 CSV 数据,把 CSV 具体化为目标数据库中的表注意:一般来说,dbt 项目不需要这个步骤,因为你的待处理项目的数据都在数据库中$ dbt seed 07:03:24 Running with dbt=1.0.1 07:03:24 Partial parse save file not found. Starting full parse. 07:03:25 Found 5 models, 20 tests, 0 snapshots, 0 analyses, 172 macros, 0 operations, 3 seed files, 0 sources, 0 exposures, 0 metrics 07:03:25 07:03:25 Concurrency: 1 threads (target=dev) 07:03:25 07:03:25 1 of 3 START seed file analytics.raw_customers.................................. [RUN] 07:03:25 1 of 3 OK loaded seed file analytics.raw_customers.............................. [INSERT 100 in 0.19s] 07:03:25 2 of 3 START seed file analytics.raw_orders..................................... [RUN] 07:03:25 2 of 3 OK loaded seed file analytics.raw_orders................................. [INSERT 99 in 0.14s] 07:03:25 3 of 3 START seed file analytics.raw_payments................................... [RUN] 07:03:26 3 of 3 OK loaded seed file analytics.raw_payments............................... [INSERT 113 in 0.24s] 07:03:26 07:03:26 Finished running 3 seeds in 0.71s. 07:03:26 07:03:26 Completed successfully 07:03:26 07:03:26 Done. PASS=3 WARN=0 ERROR=0 SKIP=0 TOTAL=3。
Copy上述结果中,可以清楚的看到共执行了三个任务,分别加载了 analytics.raw_customers、analytics.raw_orders、analytics.raw_payments 三张表。
接着,去 TiDB 数据库中看看发生了什么发现多出了 analytics 数据库,这是 dbt 为我们创建的工程数据库mysql>showdatabases;+--------------------+。
|Database|+--------------------+| INFORMATION_SCHEMA || METRICS_SCHEMA || PERFORMANCE_SCHEMA || analytics
|| mysql || test |+--------------------+6rowsinset(0.00 sec)Copyanalytics 数据库中有三张表,分别对应着上述三个任务结果mysql> show tables; +---------------------+。
| Tables_in_analytics | +---------------------+| raw_customers || raw_orders || raw_payments | +---------------------+ 3 rows in set (0.00 sec)
Copymodel 是什么?在进行下一个步骤之前,我们有必要先了解下 dbt 中的 model 扮演着什么角色?dbt 中使用 model 来描述一组数据表或视图的结构,其中主要有两类文件:SQL 和 YML。
还需要注意到的是:在 jaffle_shop 这个项目中,根据物化配置,models/ 目录下保存的是表结构,而 models/staging/ 目录下保存的是视图结构以 models/orders.sql。
为例,它是一句 SQL 查询语句,支持 jinja 语法,接下来的命令中,会根据这条 SQL 创建出 orders 表$ cat models/orders.sql {% set payment_methods = [credit_card, coupon, bank_transfer, gift_card] %} with orders as ( select * from {{ ref(stg_orders) }} ), payments as ( select * from {{ ref(stg_payments) }} ), order_payments as ( select order_id, {% for payment_method in payment_methods -%} sum(case when payment_method = {{ payment_method }} then amount else 0 end) as {{ payment_method }}_amount, {% endfor -%} sum(amount) as total_amount from payments group by order_id ), final as ( select orders.order_id, orders.customer_id, orders.order_date, orders.status, {% for payment_method in payment_methods -%} order_payments.{{ payment_method }}_amount, {% endfor -%} order_payments.total_amount as amount from orders left join order_payments on orders.order_id = order_payments.order_id ) select * from final。
Copy并且,与这条 SQL 配套的约束信息在 models/schema.yml 文件中schema.yml 是当前目录下所有模型的注册表,所有的模型都被组织成一个树形结构,描述了每条字段的说明和属性。
其中 tests 条目表示这个字段的一些约束项,可以通过 dbt test 命令来检测,更多信息请查阅官网文档cat models/schema.yml version:2...-name: orders 。
description: This table has basic information about orders, as well as some derived facts based on payments
columns:-name: order_id tests:- unique - not_null description: This is a unique identifier for an order
-name: customer_id description: Foreign key to the customers table tests:- not_null -relationships:to
: ref(customers) field: customer_id -name: order_date description: Date (UTC) that the order was placed
-name: status description:{{ doc("orders_status") }}tests:-accepted_values:values:[placed,shipped,completed
,return_pending,returned]-name: amount description: Total amount (AUD) of the order tests:- not_null
-name: credit_card_amount description: Amount of the order (AUD) paid for by credit card tests:- not_null
-name: coupon_amount description: Amount of the order (AUD) paid for by coupon tests:- not_null -name
: bank_transfer_amount description: Amount of the order (AUD) paid for by bank transfer tests:- not_null
-name: gift_card_amount description: Amount of the order (AUD) paid for by gift card tests:- not_null
Copy运行结果中显示成功创建了三张视图(analytics.stg_customers、analytics.stg_orders、analytics.stg_payments)和两张表(analytics.customers
、analytics.orders)$ dbt run 07:28:43 Running with dbt=1.0.1 07:28:43 Unable to do partial parsing because profile has changed 07:28:43 Unable to do partial parsing because a project dependency has been added 07:28:44 Found 5 models, 20 tests, 0 snapshots, 0 analyses, 172 macros, 0 operations, 3 seed files, 0 sources, 0 exposures, 0 metrics 07:28:44 07:28:44 Concurrency: 1 threads (target=dev) 07:28:44 07:28:44 1 of 5 START view model analytics.stg_customers................................. [RUN] 07:28:44 1 of 5 OK created view model analytics.stg_customers............................ [SUCCESS 0 in 0.12s] 07:28:44 2 of 5 START view model analytics.stg_orders.................................... [RUN] 07:28:44 2 of 5 OK created view model analytics.stg_orders............................... [SUCCESS 0 in 0.08s] 07:28:44 3 of 5 START view model analytics.stg_payments.................................. [RUN] 07:28:44 3 of 5 OK created view model analytics.stg_payments............................. [SUCCESS 0 in 0.07s] 07:28:44 4 of 5 START table model analytics.customers.................................... [RUN] 07:28:44 4 of 5 OK created table model analytics.customers............................... [SUCCESS 0 in 0.16s] 07:28:44 5 of 5 START table model analytics.orders....................................... [RUN] 07:28:45 5 of 5 OK created table model analytics.orders.................................. [SUCCESS 0 in 0.12s] 07:28:45 07:28:45 Finished running 3 view models, 2 table models in 0.64s. 07:28:45 07:28:45 Completed successfully 07:28:45 07:28:45 Done. PASS=5 WARN=0 ERROR=0 SKIP=0 TOTAL=5。
Copy去 TiDB 数据库中验证下,是否真的创建成功结果显示多出了 customers 等五张表格或视图,并且表或视图中的数据也都转换完成这里只展示 customers 的部分数据mysql>show
tables;+---------------------+| Tables_in_analytics |+---------------------+| customers || orders || raw_customers
|| raw_orders || raw_payments || stg_customers || stg_orders || stg_payments |+---------------------+
8rowsinset(0.00 sec) mysql>select*from customers;+-------------+------------+-----------+-------------+-------------------+------------------+-------------------------+
| customer_id | first_name | last_name | first_order | most_recent_order | number_of_orders | customer_lifetime_value
|+-------------+------------+-----------+-------------+-------------------+------------------+-------------------------+
|1| Michael | P.|2018-01-01|2018-02-10|2|33.0000||2| Shawn | M.|2018-01-11|2018-01-11|1|23.0000||3| Kathleen
| P.|2018-01-02|2018-03-11|3|65.0000||4| Jimmy | C.|NULL|NULL|NULL|NULL||5| Katherine | R.|NULL|NULL|
NULL|NULL||6| Sarah | R.|2018-02-19|2018-02-19|1|8.0000||7| Martin | M.|2018-01-14|2018-01-14|1|26.0000
||8| Frank | R.|2018-01-29|2018-03-12|2|45.0000|....Copy生成文档dbt 还支持生成可视化的文档,命令如下1.生成文档$ dbt docs generate 07:33:59 Running with dbt=1.0.1 07:33:59 Found 5 models, 20 tests, 0 snapshots, 0 analyses, 172 macros, 0 operations, 3 seed files, 0 sources, 0 exposures, 0 metrics 07:33:59 07:33:59 Concurrency: 1 threads (target=dev) 07:33:59 07:33:59 Done. 07:33:59 Building catalog 07:33:59 Catalog written to /home/ubuntu/jaffle_shop/target/catalog.json。
Copy2.开启服务$ dbt docs serve 07:43:01 Running with dbt=1.0.1 07:43:01 Serving docs at 0.0.0.0:8080 07:43:01 To access from your browser, navigate to: http://localhost:8080 07:43:01 07:43:01 07:43:01 Press Ctrl+C to exit.
Copy可以通过浏览器查看文档,其中包含 jaffle_shop 项目的整体结构以及所有表和视图的描述说明。
总结TiDB 在 dbt 中的使用主要有以下几步:安装 dbt 和 dbt-tidb配置项目编写 SQL 和 YML 文件运行项目目前,TiDB 支持 dbt 的版本在 4.0 以上,但根据 dbt-tidb
项目文档描述,低版本的 TiDB 在和 dbt 结合使用中还存在一些问题,例如:不支持临时表和临时视图、不支持 WITH 语法等想要痛快的使用 dbt ,建议使用 TiDB 5.3 以上版本,此版本支持 dbt 的全部功能。
TiDB
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。