黄东旭解析 TiDB 的核心优势
1158
2023-04-22
Flink SQL操作Hudi并同步Hive使用总结
前言
记录总结自己第一次如何使用Flink SQL读写Hudi并同步Hive,以及遇到的问题及解决过程。
版本
Flink 1.14.3Hudi 0.12.0/0.12.1
本文采用Flink yarn-session模式,不会的可以参考之前的文章。
Hudi包
## Hive3mvn clean package -DskipTests -Drat.skip=true -Pflink-bundle-shade-hive3 -Dflink1.14 -Dscala-2.12## Hive2mvn clean package -DskipTests -Drat.skip=true -Pflink-bundle-shade-hive2 -Dflink1.14 -Dscala-2.12## Hive1mvn clean package -DskipTests -Drat.skip=true -Pflink-bundle-shade-hive1 -Dflink1.14 -Dscala-2.12
为了避免不必要的麻烦,最好自己修改一下对应的profile中的Hive版本,比如我们环境的Hive版本为HDP的3.1.0.3.1.0.0-78,我们将hive.version对应的值改为3.1.0.3.1.0.0-78再打包就可以了。
方式1、建在内存中、不同步Hive表
这种建表方式,元数据在内存中,退出SQL客户端后,需要重新建表(表数据文件还在)
建表
CREATE TABLE test_hudi_flink1 ( id int PRIMARY KEY NOT ENFORCED, name VARCHAR(10), price int, ts int, dt VARCHAR(10))PARTITIONED BY (dt)WITH ( 'connector' = 'hudi', 'path' = '/tmp/hudi/test_hudi_flink1', 'table.type' = 'MERGE_ON_READ', 'hoodie.datasource.write.keygenerator.class' = 'org.apache.hudi.keygen.ComplexAvroKeyGenerator', 'hoodie.datasource.write.recordkey.field' = 'id', 'hoodie.datasource.write.hive_style_partitioning' = 'true');
PRIMARY KEY和hoodie.datasource.write.recordkey.field作用相同,联合主键时,可以单独放在最后 PRIMARY KEY (id1, id2) NOT ENFORCED
CREATE TABLE test_hudi_flink1 ( id1 int, id2 int, name VARCHAR(10), price int, ts int, dt VARCHAR(10),PRIMARY KEY (id1, id2) NOT ENFORCED)
Insert
insert into test_hudi_flink1 values (1,'hudi',10,100,'2022-10-31'),(2,'hudi',10,100,'2022-10-31');
查询
select * from test_hudi_flink1;
通过Flink查询出来的结果是没有Hudi的元数据字段的
方式2、建在Hive Catalog中、不同步Hive表
这种建表方式,会在对应的Hive中创建表,好处是,当我们退出SQL客户端后,再重新启动一个新的SQL客户端,我们可以直接使用Hive Catalog中的表,进行读写数据。
建表
CREATE CATALOG hive_catalog WITH ( 'type' = 'hive', 'default-database' = 'default', 'hive-conf-dir' = '/usr/hdp/3.1.0.0-78/hive/conf');use catalog hive_catalog;use hudi;CREATE TABLE test_hudi_flink2 ( id int PRIMARY KEY NOT ENFORCED, name VARCHAR(10), price int, ts int, dt VARCHAR(10))PARTITIONED BY (dt)WITH ( 'connector' = 'hudi', 'path' = '/tmp/hudi/test_hudi_flink2', 'hoodie.datasource.write.keygenerator.class' = 'org.apache.hudi.keygen.ComplexAvroKeyGenerator', 'hoodie.datasource.write.recordkey.field' = 'id', 'hoodie.datasource.write.hive_style_partitioning' = 'true');
Insert
insert into test_hudi_flink2 values (1,'hudi',10,100,'2022-10-31'),(2,'hudi',10,100,'2022-10-31');
查询
select * from test_hudi_flink2;
但是同样地也无法查询Hudi的元数据字段,而且在Hive表中查询此表是会有异常的,因为表结构是这样的:
show create table test_hudi_flink2;+----------------------------------------------------+| createtab_stmt |+----------------------------------------------------+| CREATE TABLE `test_hudi_flink2`( || ) || ROW FORMAT SERDE || 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' || STORED AS INPUTFORMAT || 'org.apache.hadoop.mapred.TextInputFormat' || OUTPUTFORMAT || 'org.apache.hadoop.hive.ql.io.IgnoreKeyTextOutputFormat' || LOCATION || 'hdfs://cluster1/warehouse/tablespace/managed/hive/hudi.db/test_hudi_flink2' || TBLPROPERTIES ( || 'flink.connector'='hudi', || 'flink.hoodie.datasource.write.hive_style_partitioning'='true', || 'flink.hoodie.datasource.write.recordkey.field'='id', || 'flink.partition.keys.0.name'='dt', || 'flink.path'='/tmp/hudi/test_hudi_flink2', || 'flink.schema.0.data-type'='INT NOT NULL', || 'flink.schema.0.name'='id', || 'flink.schema.1.data-type'='VARCHAR(10)', || 'flink.schema.1.name'='name', || 'flink.schema.2.data-type'='INT', || 'flink.schema.2.name'='price', || 'flink.schema.3.data-type'='INT', || 'flink.schema.3.name'='ts', || 'flink.schema.4.data-type'='VARCHAR(10)', || 'flink.schema.4.name'='dt', || 'flink.schema.primary-key.columns'='id', || 'flink.schema.primary-key.name'='PK_3386', || 'transient_lastDdlTime'='1667129407') |+----------------------------------------------------+
方式3、建在内存中、同步Hive表
这样建表的好处是,可以利用同步到Hive中的表,通过Hive SQL和Spark SQL查询,也可以利用Spark进行insert、update等,但是Flink SQL客户端退出后,不能利用Hive中的表进行写数据,需要再重新建表
MOR表
建表
配置环境变量HIVE_CONF_DIR
export HIVE_CONF_DIR=/usr/hdp/3.1.0.0-78/hive/conf
HIVE_CONF_DIR和hive_sync.conf.dir作用是一样的,如果没有配置hive_sync.conf.dir的话就会取HIVE_CONF_DIR,如果都没有配置,同步会有异常,具体看后面的异常解决。
关于同步Hive的参数,官方文档上说hive_sync.metastore.uris是必须的,但是经过验证,不设置也可以,因为hive_sync.conf.dir下面有hive-site.xml读取里面的配置信息获取即可,Spark SQL同步Hive也是读取hive-site.xml的。其他的参数可以自己去了解
同步表
只有在写数据的时候才会触发同步Hive表
insert into test_hudi_flink3 values (1,'hudi',10,100,'2022-10-31'),(2,'hudi',10,100,'2022-10-31');
然后我们可以看到在Hive库中生成了两张表test_hudi_flink3_ro、test_hudi_flink3_rt,这和我们使用Spark SQL同步的表是一样的,可以用Hive查询,也可以用Spark查询、写数据
MOR表一开始没有生成parquet文件,在Hive里查询为空(RO、RT都为空),我们可以在SparkSQL里再插入几条数据,就可以查询出数据来了
# ro、rt都支持Spark SQL insertinsert into test_hudi_flink3_ro values (3,'hudi',10,100,'2022-10-31'),(4,'hudi',10,100,'2022-10-31');insert into test_hudi_flink3_rt values (5,'hudi',10,100,'2022-10-31'),(6,'hudi',10,100,'2022-10-31');
关于Flink SQL和Spark SQL配置一致性问题:
COW表
我们来看一下COW表会同步哪些表
建表
同步表
写数据触发同步Hive表
insert into test_hudi_flink4 values (1,'hudi',10,100,'2022-10-31'),(2,'hudi',10,100,'2022-10-31');
因为COW表只有RT表,所以不会通过_rt来区分,同步的表名和配置的表名一致。这点可以参考我之前总结的文章Hudi查询类型/视图总结
方式4、建在Hive Catalog中、同步Hive表
这样建表的好处是,我们既可以利用Hive Catalog中的表通过Flink SQL写数据,也可以利用同步的Hive表通过Hive SQL查询、Spark SQL读写
MOR表
建表
配置环境变量HIVE_CONF_DIR
export HIVE_CONF_DIR=/usr/hdp/3.1.0.0-78/hive/conf
同步表
同样写几条数据触发同步Hive
insert into test_hudi_flink5 values (1,'hudi',10,100,'2022-10-31'),(2,'hudi',10,100,'2022-10-31');
然后我们可以看到在Hive库中生成了三张表test_hudi_flink4、test_hudi_flink4_ro、test_hudi_flink4_rt,其中test_hudi_flink4是Flink格式的,和上面的方式2中的表结构一样,不能用Hive查询,但是可以在Flink中写数据、查询数据,对于test_hudi_flink4_ro、test_hudi_flink4_rt,我们就可以用Hive查询,也可以用Spark查询、写数据。
COW表
但是对于COW表来说因为同步的表名没有_rt也就是和Hive Catalog表名一样,这样就有问题,所以我们需要区分出Hive Catalog表和同步的表名,一种方式是修改hive_sync.table,另一种方式是Hive Catalog表和同步表保存在不同的Hive Database中,比如下面的示例
这样Catalog表保存在flink_hudi库中,同步的表保存在hudi库中
insert into test_hudi_flink6 values (1,'hudi',10,100,'2022-10-31'),(2,'hudi',10,100,'2022-10-31');
异常解决
记录异常信息及解决方法,由于没有及时整理,顺序可能有点乱
不同步Hive
mvn clean package -DskipTests -Drat.skip=true -Pflink-bundle-shade-hive3 -Dflink1.14 -Dscala-2.12
但是用自己的打的包依旧不成功,在Flink SQL客户端没有异常,就很费解,后来发现在Flink yarn-session对应的web界面的Job Manager菜单里能看到具体的日志信息,比如写Hudi的Starting Javalin,这样就好办了,根据具体的异常信息对应解决即可。
异常1
2022-10-29 16:02:41,694 WARN hive.metastore [] - set_ugi() not successful, Likely cause: new client talking to old server. Continuing without it.org.apache.thrift.transport.TTransportException: null at org.apache.thrift.transport.TIOStreamTransport.read(TIOStreamTransport.java:132) ~[hudi-flink1.14-bundle-0.12.0.jar:0.12.0]
解决方法:配置环境变量HIVE_CONF_DIR或者配置参数hive_sync.conf.dir,这个问题困扰了我一整天,因为关于这个配置网上没有资料,我是在源码中找到的答案:
public static org.apache.hadoop.conf.Configuration getHiveConf(Configuration conf) { String explicitDir = conf.getString(FlinkOptions.HIVE_SYNC_CONF_DIR, System.getenv("HIVE_CONF_DIR")); org.apache.hadoop.conf.Configuration hadoopConf = new org.apache.hadoop.conf.Configuration(); if (explicitDir != null) { hadoopConf.addResource(new Path(explicitDir, "hive-site.xml")); } return hadoopConf; }// StreamWriteOperatorCoordinatorthis.hiveConf = new SerializableConfiguration(HadoopConfigurations.getHiveConf(conf));
异常2
原因是jar包冲突,根据异常信息可知hudi包的org.apache.parquet.schema.Types这个类可能和flink环境下面的其他jar包冲突,经排查,发现hive-exec.*jar里也有一样的类名,将该jar包删除,验证问题解决。(在之前的文章中有写到因为缺某些类,才会将hive-exec.*jar放到flink下面,现在验证不缺这个类了,如果还有的话,可以找其他没有冲突的包替代)
异常3
Caused by: org.apache.flink.util.FlinkRuntimeException: Failed to start the operator coordinators at org.apache.flink.runtime.scheduler.DefaultOperatorCoordinatorHandler.startAllOperatorCoordinators(DefaultOperatorCoordinatorHandler.java:90) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.scheduler.SchedulerBase.startScheduling(SchedulerBase.java:585) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.jobmaster.JobMaster.startScheduling(JobMaster.java:965) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.jobmaster.JobMaster.startJobExecution(JobMaster.java:882) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.jobmaster.JobMaster.onStart(JobMaster.java:389) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.rpc.RpcEndpoint.internalCallOnStart(RpcEndpoint.java:181) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.rpc.akka.AkkaRpcActor$StoppedState.lambda$start$0(AkkaRpcActor.java:624) ~[flink-rpc-akka_0f8ea990-3e27-4639-9ea1-d92b6879facc.jar:1.14.3] at org.apache.flink.runtime.concurrent.akka.ClassLoadingUtils.runWithContextClassLoader(ClassLoadingUtils.java:68) ~[flink-rpc-akka_0f8ea990-3e27-4639-9ea1-d92b6879facc.jar:1.14.3] at org.apache.flink.runtime.rpc.akka.AkkaRpcActor$StoppedState.start(AkkaRpcActor.java:623) ~[flink-rpc-akka_0f8ea990-3e27-4639-9ea1-d92b6879facc.jar:1.14.3] ... 20 moreCaused by: java.lang.NoClassDefFoundError: org/apache/hadoop/hive/conf/HiveConf at org.apache.hudi.sink.StreamWriteOperatorCoordinator.initHiveSync(StreamWriteOperatorCoordinator.java:315) ~[hudi-flink1.14-bundle-0.12.1.jar:0.12.1] at org.apache.hudi.sink.StreamWriteOperatorCoordinator.start(StreamWriteOperatorCoordinator.java:191) ~[hudi-flink1.14-bundle-0.12.1.jar:0.12.1] at org.apache.flink.runtime.operators.coordination.OperatorCoordinatorHolder.start(OperatorCoordinatorHolder.java:194) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.scheduler.DefaultOperatorCoordinatorHandler.startAllOperatorCoordinators(DefaultOperatorCoordinatorHandler.java:85) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.scheduler.SchedulerBase.startScheduling(SchedulerBase.java:585) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.jobmaster.JobMaster.startScheduling(JobMaster.java:965) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.jobmaster.JobMaster.startJobExecution(JobMaster.java:882) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.jobmaster.JobMaster.onStart(JobMaster.java:389) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.rpc.RpcEndpoint.internalCallOnStart(RpcEndpoint.java:181) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.rpc.akka.AkkaRpcActor$StoppedState.lambda$start$0(AkkaRpcActor.java:624) ~[flink-rpc-akka_0f8ea990-3e27-4639-9ea1-d92b6879facc.jar:1.14.3] at org.apache.flink.runtime.concurrent.akka.ClassLoadingUtils.runWithContextClassLoader(ClassLoadingUtils.java:68) ~[flink-rpc-akka_0f8ea990-3e27-4639-9ea1-d92b6879facc.jar:1.14.3] at org.apache.flink.runtime.rpc.akka.AkkaRpcActor$StoppedState.start(AkkaRpcActor.java:623) ~[flink-rpc-akka_0f8ea990-3e27-4639-9ea1-d92b6879facc.jar:1.14.3] ... 20 moreCaused by: java.lang.ClassNotFoundException: org.apache.hadoop.hive.conf.HiveConf at java.net.URLClassLoader.findClass(URLClassLoader.java:381) ~[?:1.8.0_181] at java.lang.ClassLoader.loadClass(ClassLoader.java:424) ~[?:1.8.0_181] at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349) ~[?:1.8.0_181] at java.lang.ClassLoader.loadClass(ClassLoader.java:357) ~[?:1.8.0_181] at org.apache.hudi.sink.StreamWriteOperatorCoordinator.initHiveSync(StreamWriteOperatorCoordinator.java:315) ~[hudi-flink1.14-bundle-0.12.1.jar:0.12.1] at org.apache.hudi.sink.StreamWriteOperatorCoordinator.start(StreamWriteOperatorCoordinator.java:191) ~[hudi-flink1.14-bundle-0.12.1.jar:0.12.1] at org.apache.flink.runtime.operators.coordination.OperatorCoordinatorHolder.start(OperatorCoordinatorHolder.java:194) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.scheduler.DefaultOperatorCoordinatorHandler.startAllOperatorCoordinators(DefaultOperatorCoordinatorHandler.java:85) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.scheduler.SchedulerBase.startScheduling(SchedulerBase.java:585) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.jobmaster.JobMaster.startScheduling(JobMaster.java:965) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.jobmaster.JobMaster.startJobExecution(JobMaster.java:882) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.jobmaster.JobMaster.onStart(JobMaster.java:389) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.rpc.RpcEndpoint.internalCallOnStart(RpcEndpoint.java:181) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.runtime.rpc.akka.AkkaRpcActor$StoppedState.lambda$start$0(AkkaRpcActor.java:624) ~[flink-rpc-akka_0f8ea990-3e27-4639-9ea1-d92b6879facc.jar:1.14.3] at org.apache.flink.runtime.concurrent.akka.ClassLoadingUtils.runWithContextClassLoader(ClassLoadingUtils.java:68) ~[flink-rpc-akka_0f8ea990-3e27-4639-9ea1-d92b6879facc.jar:1.14.3] at org.apache.flink.runtime.rpc.akka.AkkaRpcActor$StoppedState.start(AkkaRpcActor.java:623) ~[flink-rpc-akka_0f8ea990-3e27-4639-9ea1-d92b6879facc.jar:1.14.3]
这个异常就是使用在maven下载的包同步hive产生的异常,但是无法在Flink yarn-session对应的web界面看日志,因为yarn-session对应的任务会跑挂掉,我们可以通过下面的命令查看日志信息
yarn logs -applicationId application_1666247158647_0121
异常4
Caused by: org.apache.flink.streaming.runtime.tasks.StreamTaskException: Could not instantiate outputs in order. at org.apache.flink.streaming.api.graph.StreamConfig.getOutEdgesInOrder(StreamConfig.java:488) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.streaming.runtime.tasks.StreamTask.createRecordWriters(StreamTask.java:1612) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.streaming.runtime.tasks.StreamTask.createRecordWriterDelegate(StreamTask.java:1596) ~[flink-dist_2.12-1.14.3.jar:1.14.3] at org.apache.flink.streaming.runtime.tasks.StreamTask.
这个原因是因为yarn-session所用的hudi包和sql-client所用的hudi包版本不一致,改为一致即可
其他异常
比如缺相关依赖包异常,去环境上Hive路径下拷贝对应的jar包到Flink路径下即可
总结
本文记录了自己使用Flink SQL读写Hudi表并同步Hive的一些配置,并且做了Flink SQL和Spark SQL的一致性配置。其实关于Flink SQL读写Hudi还有一个HoodieHiveCatalog也可以使用,有时间等我研究明白了,再分享给大家。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。