麒麟v10 上部署 TiDB v5.1.2 生产环境优化实践
4171
2023-04-19
Redis BloomFilter布隆过滤器原理与实现
Bloom Filter 概念
布隆过滤器(英语:Bloom Filter)是1970年由一个叫布隆的小伙子提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
Bloom Filter 原理
布隆过滤器的原理是,当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。这就是布隆过滤器的基本思想。
Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率
缓存穿透
每次查询都会直接打到DB
简而言之,言而简之就是我们先把我们数据库的数据都加载到我们的过滤器中,比如数据库的id现在有:1、2、3
那就用id:1 为例子他在上图中经过三次hash之后,把三次原本值0的地方改为1
下次数据进来查询的时候如果id的值是1,那么我就把1拿去三次hash 发现三次hash的值,跟上面的三个位置完全一样,那就能证明过滤器中有1的
反之如果不一样就说明不存在了
那应用的场景在哪里呢?一般我们都会用来防止缓存击穿
简单来说就是你数据库的id都是1开始然后自增的,那我知道你接口是通过id查询的,我就拿负数去查询,这个时候,会发现缓存里面没这个数据,我又去数据库查也没有,一个请求这样,100个,1000个,10000个呢?你的DB基本上就扛不住了,如果在缓存里面加上这个,是不是就不存在了,你判断没这个数据就不去查了,直接return一个数据为空不就好了嘛。
这玩意这么好使那有啥缺点么?有的,我们接着往下看
Bloom Filter的缺点
bloom filter之所以能做到在时间和空间上的效率比较高,是因为牺牲了判断的准确率、删除的便利性
存在误判,可能要查到的元素并没有在容器中,但是hash之后得到的k个位置上值都是1。如果bloom filter中存储的是黑名单,那么可以通过建立一个白名单来存储可能会误判的元素。
删除困难。一个放入容器的元素映射到bit数组的k个位置上是1,删除的时候不能简单的直接置为0,可能会影响其他元素的判断。可以采用Counting Bloom Filter
常见问题
1、为何要使用多个哈希函数?
Hash本身就会面临冲突,如果只使用一个哈希函数,那么冲突的概率会比较高。例如长度100的数组,如果只使用一个哈希函数,添加一个元素后,添加第二个元素时冲突的概率为1%,添加第三个元素时冲突的概率为2%…但如果使用两个哈希函数,添加一个元素后,添加第二个元素时冲突的概率降为万分之4(四种可能的冲突情况,情况总数100x100)
go语言实现
?
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。