sqlite wal 分析

网友投稿 1102 2023-04-17

sqlite wal 分析

sqlite wal 分析

一. wal 原理

1.1 redo log

sqlite wal 是一种简单的 redo log 事务实现,redo log 概念这里简述下。数据库事务需要满足满足 acid,其中原子性(a),即一次事务内的多个修改,要么全部提交成功要么全部提交失败,不存在部分提交到 db 的情况。 redo log 的解决思路是将修改后的日志按序先写入 log 文件(wal 文件),每个完成的事务会添加 checksum,可鉴别事务的完整性。事务写入日志文件后,即代表提交成功,读取时日志和 db 文件合并的结果构成了 db 的完整内容。同时定期 checkpoint,同步 wal 中的事务到 db 文件,使 wal 文件保持在合理的大小。日志文件持久化到磁盘后,已提交成功的事务按序 checkpoint 执行的结果都是一样的,不受 crash 和掉电的影响。

sqlite 的 wal 也是这种思路的实现,只是 sqlite 提供的是一种简化实现,同时只允许一个写者操作日志文件,日志也是 page 这种物理日志。redo log 还能将 undo log 的随机写转化为顺序写,具有更高的写入性能,这里不赘述。

想对 redo log 进一步了解,可以参考以下资料:

1.2 sqlite wal

sqlite wal 写操作不直接写入 db 主文件,而是写到“db-wal”文件(以下简称'wal'文件)的末尾。读操作时,将结合 db 主文件以及 wal 的内容返回结果。wal 模式同时具有简单的 mvvc 实现,支持文件级别的读写并发,提供了相对 delete(rollback) 模式 (undo log 事务) 更高的并发性。 具体可看图加深理解。

下图中:

关于写

关于读

读与写可以并发;每个读事务会记录 wal 文件中一个 record 点,作为它的 read mark,每个事务执行过程中 read mark 不会发生改变,新提交的事务产生的修改不会影响旧的事务。read mark 会选择事务完整提交后的位置。原始 db 文件和 wal 中 read mark 之前的记录构成了数据库的一个固定的版本记录;读事务读一个 page 优先读 wal 文件,没有则读原始文件;如果一个 page 在 wal 中有多个副本,读 read mark 前的最后一个;同一个 read mark 可以被多个读事务使用。

关于 checkpoint:

checkpoint 针对 wal 中已经成功落盘的事务,每次 checkpoint 前会执行 fsync;每次 checkpoint 从前到后按序回写 wal 文件中尚未提交的事务到 db;如果 checkpoint 中途 crash,由于事务已持久化到 wal 文件,下次启动重新按序回写 wal 中的事务即可;wal 中所有的事务 checkpoint 后,wal 文件会从头开始使用;checkpoint 并不一定都会提交 wal 中全部的事务,如果只是部分提交,下次写入还是会写入 wal 文件的末尾,wal 文件可能会变很大;只有 truncate 的 checkpoint 才能清理已经异常变大的 wal 文件,会 truncate 文件大小到 0。

二. wal 实现​

wal 的实现大部分代码集中在 wal.c 中,从 sqlite 的架构划分应该主要算是 pager 层的实现。

2.1 wal 和 wal-index 文件格式

文件格式定义,官方文档见:

这一层细节比较多,主要是些二进制定义。核心是 wal 格式提供了一种 page 格式的 redo log 组织格式,保证 crash 后 recover 过程满足一致性。

wal-index 文件(db-shm)只是一种对 wal 文件的快速索引,后文为了省事,也统称 wal 文件。

2.2 文件多副本抽象

即 wal 和 db 文件对外表现为一个统一的文件抽象,并提供文件级别的 mvcc,对 pager 层屏蔽 wal 细节。

由于 wal 和 db 一样都是以 pgno 的方式索引 page,按 pgno 替换就可以构造出不同版本的 b 树,比较简单。mvcc 主要通过 read lock 的 read mark 实现,前面有介绍过, 后面并发控制部分会详细举例介绍。

具体实现可看:

2.3 并发控制

通过文件锁保证并发操作不会损坏数据库文件,下一节详细讲解。

三. wal 下的并发

wal 支持读读、读写的并发,相比最初的 rollback journal 模式提供了更大的并发力度。但 wal 实现的是文件级别的并发,没有 mysql 表锁行锁的概念,一个 db 文件同时的并发写事务同时只能存在一个,不支持写的同时并发。checkpoint 也可能会 block 读写。

wal 并发实现上主要通过文件锁,和文件级别 mvcc 来实现文件级别的读写并发。 锁即下文源码中的 WAL_CKPT_LOCK,WAL_WRITE_LOCK 和WAL_READ_LOCK,出于简化问题考虑省略了 WAL_RECOVER_LOCK 等相关性不大的其他锁的讨论。mvcc 即通过文件多副本和 read mark 实现,后文也会详细介绍。

3.1 锁的分类和作用

可看 2.3.1节 How the various locks are used

也可看下面简化分析:

3.2 锁的持有情况

数据库的访问,可以分为 3 类:读、写和checkpoint。事务对锁的持有不总是在事务一开始就持有,后文为了简化分析,会假设读写事务对锁的持有在事务开始时是已知的,并且与事务同生命周期。实际在读事务某些执行路径上也可能会持有 write lock,这里专注主线逻辑。

3.3 锁的应用

这部分可以和源码分析部分参照起来看,是整个 wal 里面相对复杂的部分,重点,需要来回反复看。

ongoing transition : 表示正在进行中的事务,同时也表示一个活跃的数据库连接,蓝线表示 read mark 的位置。

pgx.y: 表示 page 的页号和版本。

3.3.1 读写

如图可知:

wal文件存在 4 个已经提交的事务第一个事务修改了 page0,第二个事务修改了 page0、1、3,依此类推。当前数据库上存在 4 个活跃的连接,包括 3 个读事务和 1 个写事务;写事务独占了 WAL_WRITE_LOCK,所以此时不能再发起一个写事务;写事务占有 1(4)读锁,所以写事务读取不到 read mark 4 之后的修改,只能读取 read mark 4 之前的修改。即写事务读取 page4 时不能读取到 page4.3,只能读取 page4.0;3 个读事务占有 0(0),1(4),2(5)三个读锁,read mark 只能在事务结束的位置,不会处于中间 page 的位置;后续如果发起一个读事务,会占有读锁 3(7)。理论上可以发起任意多个读请求,读锁可以被 sqlite 连接共享。

3.3.2 checkpoint

这部分要和源码分析结合,如果此时发起 checkpoint。

四. checkpoint 源码分析

源码对应 sqlite 3.15.2,通过直接调用 checkpoint 观察整个过程。

4.1 调用链路

4.2 sqlite3_wal_checkpoint_v2

主要是加锁和一些参数校验。

4.3 sqlite3Checkpoint

ndb 上循环 checkpoint,大多数时候只有一个 db 文件。

4.4 sqlite3BtreeCheckpoint

检查 btree 是否 locked,也是前置检查逻辑。

4.5 sqlite3PagerCheckpoint

也是前置的处理逻辑。不过有个和 checkpoint 逻辑有关的。

/* 只在非SQLITE_CHECKPOINT_PASSIVE模式时设置xBusyHandler * 即SQLITE_CHECKPOINT_PASSIVE时如果获取不到锁,立即返回,不进行等待并retry */ if( pPager->pWal ){ rc = sqlite3WalCheckpoint(pPager->pWal, db, eMode, (eMode==SQLITE_CHECKPOINT_PASSIVE ? 0 : pPager->xBusyHandler), pPager->pBusyHandlerArg, pPager->walSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace, pnLog, pnCkpt ); }

4.6 sqlite3WalCheckpoint

int sqlite3WalCheckpoint( Wal *pWal, /* Wal connection */ int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int sync_flags, /* Flags to sync db file with (or 0) */ int nBuf, /* Size of temporary buffer */ u8 *zBuf, /* Temporary buffer to use */ int *pnLog, /* OUT: Number of frames in WAL */ int *pnCkpt /* OUT: Number of backfilled frames in WAL */){ int rc; /* Return code */ int isChanged = 0; /* True if a new wal-index header is loaded */ int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ assert( pWal->ckptLock==0 ); assert( pWal->writeLock==0 ); /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); if( pWal->readOnly ) return SQLITE_READONLY; WALTRACE(("WAL%p: checkpoint begins\n", pWal)); /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive ** "checkpoint" lock on the database file. */ // 独占获取WAL_CKPT_LOCK锁 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); if( rc ){ /* EVIDENCE-OF: R-10421-19736 If any other process is running a ** checkpoint operation at the same time, the lock cannot be obtained and ** SQLITE_BUSY is returned. ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, ** it will not be invoked in this case. */ testcase( rc==SQLITE_BUSY ); testcase( xBusy!=0 ); return rc; } pWal->ckptLock = 1; /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and ** TRUNCATE modes also obtain the exclusive "writer" lock on the database ** file. ** ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained ** immediately, and a busy-handler is configured, it is invoked and the ** writer lock retried until either the busy-handler returns 0 or the ** lock is successfully obtained. */ // 非SQLITE_CHECKPOINT_PASSIVE时,独占获取WAL_WRITE_LOCK锁,并进行busy retry if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); if( rc==SQLITE_OK ){ pWal->writeLock = 1; }else if( rc==SQLITE_BUSY ){ eMode2 = SQLITE_CHECKPOINT_PASSIVE; xBusy2 = 0; rc = SQLITE_OK; } } //如果wal-index显示db有变化,unfetch db文件,和主线逻辑关系不大 /* Read the wal-index header. */ if( rc==SQLITE_OK ){ rc = walIndexReadHdr(pWal, &isChanged); if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ sqlite3OsUnfetch(pWal->pDbFd, 0, 0); } } /* Copy data from the log to the database file. */ if( rc==SQLITE_OK ){ if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ rc = SQLITE_CORRUPT_BKPT; }else{ // checkpoint rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); } /* If no error occurred, set the output variables. */ if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); } } // release wal index,非主线逻辑 if( isChanged ){ /* If a new wal-index header was loaded before the checkpoint was ** performed, then the pager-cache associated with pWal is now ** out of date. So zero the cached wal-index header to ensure that ** next time the pager opens a snapshot on this database it knows that ** the cache needs to be reset. */ memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); }// 释放锁,返回 /* Release the locks. */ sqlite3WalEndWriteTransaction(pWal); walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); pWal->ckptLock = 0; WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);}

4.7 walCheckpoint

五. 常见问题

5.1 checkpoint 何时触发

手动调用 checkpoint 触发;通过 sql 语句 PRAGMA wal_checkpoint 触发;sqlite 官方默认的 checkpoint 阈值是 1000 page,即当 wal 文件达到 1000 page 大小时,写操作的线程在完成写操作后同步进行 checkpoint 操作;当最后一个连接 close 时触发。

5.2 checkpoint 四种 mode 的区别

passive 不会加写锁,也就是不会 block 写操作;其他三种 mode 在回写 db 结束之前的逻辑都是一样。区别是 restart 会尝试再次独占获取读锁,保证 restart 型的 checkpoint 正常结束后,下一个发起的事务会从头开始循环利用 wal 文件。truncate 模式更近一步会 truncate wal 文件。

5.3 wal 下读写和 checkpoint 的并发性

可看看上面不同操作对锁的持有情况:

读和读可以同时进行;读和写可以同时进行;checkpoint 和读事务也存在很大程度的并发,checkpoint 对读锁持有都是间歇性的,理论上都是耗时很短。仔细观察上面的源码分析部分,虽然会周期性持有读锁,基本上是等待读事务释放读锁,在真正耗时的 io 操作回写 wal 日志到 db 的过程中,还是可以发起读事务的。这种实现 checkpoint 对读存在着某种避让,读操作过于激进,会导致 checkpoint 饥饿,极端点会导致 wal 文件异常大;passive checkpoint 和写事务,理论上也是可以并发;非passive checkpoint 和写事务,理论上不可以并发。

5.4 wal 文件巨大的原因 & 如何解决

5.4.1 原因

wal 文件提供的操作模型非常简单,只有在一次完整的 checkpoint 后才会重头开始循环利用 wal 文件,如果 checkpoint 一直没有提交当前的 wal 文件中所有更新,会导致 wal 文件无限增大。同时只有在 truncate 模式 checkpoint 才会缩减 wal 文件。

大概有以下原因会导致 wal 不能完全提交,核心都是 checkpoint 竞争不到锁。

非 passive 模式 checkpoint,需要获取 write lock,但获取不到;passive 模式 checkpoint 过程中,有并发的写操作,导致 wal 中有未提交的日志;checkpoint 没能及时获取所以读锁。

在 checkpoint 中不能如预料中的获得锁,主要有两种可能:

事务耗时很长,导致锁迟迟不能释放;数据连接中存在锁丢失的情况,导致 checkpoint 永远不能获取到需求的锁;数据库连接过多,导致 checkpoint 过程中竞争不到锁。

5.4.2 解决方案

综上要解决 wal 无限增大主要有:

尽量把无关代码移除事务,保证事务只做数据库相关的操作;检查代码,避免出现锁丢失的情况;读写操作适当退避,保证 checkpoint 有机会完全提交,而不总是部分提交。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:OLAP和OLTP的本质区别,一篇文章讲明白
下一篇:SQL Server居然也能调 C# 代码 ?
相关文章